Circuit Switched Data

Last updated

In communications, Circuit Switched Data (CSD) (also named GSM data) is the original form of data transmission developed for the time-division multiple access (TDMA)-based mobile phone systems like Global System for Mobile Communications (GSM). After 2010 many telecommunication carriers dropped support for CSD, and CSD has been superseded by GPRS and EDGE (E-GPRS).

Contents

Technical

CSD uses a single radio time slot to deliver 9.6 kbit/s data transmission to the GSM network switching subsystem where it could be connected through the equivalent of a normal modem to the Public Switched Telephone Network (PSTN), allowing direct calls to any dial-up service. For backwards compatibility, the IS-95 standard also supports CDMA Circuit Switched Data. However, unlike TDMA, there are no time slots, and all CDMA radios can be active all the time to deliver up to 14.4 kbit/s data transmission speeds. With the evolution of CDMA to CDMA2000 and 1xRTT, the use of IS-95 CDMA Circuit Switched Data declined in favour of the faster data transmission speeds available with the newer technologies.

Prior to CSD, data transmission over mobile phone systems was done by using a modem, either built into the phone or attached to it. Such systems were limited by the quality of the audio signal to 2.4 kbit/s or less. With the introduction of digital transmission in TDMA-based systems like GSM, CSD provided almost direct access to the underlying digital signal, allowing for higher speeds. At the same time, the speech-oriented audio compression used in GSM actually meant that data rates using a traditional modem connected to the phone would have been even lower than with older analog systems.

A CSD call functions in a very similar way to a normal voice call in a GSM network. A single dedicated radio time slot is allocated between the phone and the base station. A dedicated "sub-time slot" (16 kbit/s) is allocated from the base station to the transcoder, and finally, another time slot (64 kbit/s) is allocated from the transcoder to the Mobile Switching Centre (MSC).

At the MSC, it is possible to use a modem to convert to an analog signal, though this will typically actually be encoded as a digital pulse-code modulation (PCM) signal when sent from the MSC. It is also possible to directly use the digital signal as an Integrated Services Digital Network (ISDN) data signal and feed it into the equivalent of a remote access server.

High Speed Circuit Switched Data (HSCSD)

Few devices support HSCSD - the Nokia CardPhone 2.0 PC Card is one of them. Nokia CardPhone 2.0.jpg
Few devices support HSCSD – the Nokia CardPhone 2.0 PC Card is one of them.

High Speed Circuit Switched Data (HSCSD) is an enhancement to CSD designed to provide higher data rates by means of more efficient channel coding and/or multiple (up to 4) time slots. It requires the time slots being used to be fully reserved to a single user. A transfer rate of up to 57.6 kbit/s (i.e., 4 × 14.4 kbit/s) can be reached, or even 115 kbit/s if a network allows combining 8 slots instead of just 4. It is possible that either at the beginning of the call, or at some point during a call, it will not be possible for the user's full request to be satisfied since the network is often configured to allow normal voice calls to take precedence over additional time slots for HSCSD users.

An innovation in HSCSD is to allow different error correction methods to be used for data transfer. The original error correction used in GSM was designed to work at the limits of coverage and in the worst case that GSM will handle. This means that a large part of the GSM transmission capacity is taken up with error correction codes. HSCSD provides different levels of possible error correction which can be used according to the quality of the radio link. This means that in the best conditions 14.4 kbit/s can be put through a single time slot that under CSD would only carry 9.6 kbit/s, i.e. a 50% improvement in throughput.

The user is typically charged for HSCSD at a rate higher than a normal phone call (e.g., by the number of time slots allocated) for the total period of time that the user has a connection active. This makes HSCSD relatively expensive in many GSM networks and is one of the reasons that packet-switched General Packet Radio Service (GPRS), which typically has lower pricing (based on amount of data transferred rather than the duration of the connection), has become more common than HSCSD.

Apart from the fact that the full allocated bandwidth of the connection is available to the HSCSD user, HSCSD also has an advantage in GSM systems in terms of lower average radio interface latency than GPRS. This is because the user of an HSCSD connection does not have to wait for permission from the network to send a packet.

HSCSD is also an option in Enhanced Data Rates for GSM Evolution (EDGE) and Universal Mobile Telecommunications System (UMTS) systems where packet data transmission rates are much higher. In the UMTS system, the advantages of HSCSD over packet data are even lower since the UMTS radio interface has been specifically designed to support high bandwidth, low latency packet connections. This means that the primary reason to use HSCSD in this environment would be access to legacy dial up systems.

HSCSD was specified in 1997. [1] Nokia 6210 was the first mobile phone from Nokia that supported HSCSD.

Successors

GSM data transmission has advanced since the introduction of CSD:

In some places CSD services have continued to operate on 2G networks for a long time. In the Netherlands operator KPN switched the service off in 2021. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Enhanced Data rates for GSM Evolution</span> Digital mobile phone technology

Enhanced Data rates for GSM Evolution (EDGE), also known as 2.75G, Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), and Enhanced Data rates for Global Evolution, is a 2G digital mobile phone technology for data transmission. It is a subset of General Packet Radio Service (GPRS) on the GSM network and improves upon it offering speeds close to 3G technology, hence the name 2.75G.

<span class="mw-page-title-main">GSM</span> Cellular telephone network standard

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. GSM is also a trade mark owned by the GSM Association. GSM may also refer to the Full Rate voice codec.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). Networks and mobile devices with GPRS started to roll out around the year 2001. At the time of introduction it offered for the first time seamless mobile data transmission using packet data for an "always-on" connection, providing improved Internet access for web, email, WAP services, and Multimedia Messaging Service (MMS).

<span class="mw-page-title-main">Time-division multiple access</span> Channel access method for networks using a shared communications medium

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

cdmaOne First CDMA-based digital cellular technology

Interim Standard 95 (IS-95) was the first digital cellular technology that used code-division multiple access (CDMA). It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne.

<span class="mw-page-title-main">3G</span> Third generation of wireless mobile telecommunications technology

3G is the third generation of wireless mobile telecommunications technology. It is the upgrade to 2G, 2.5G, GPRS and 2.75G Enhanced Data Rates for GSM Evolution networks, offering faster data transfer, and better voice quality. This network was superseded by 4G, and later by 5G. This network is based on a set of standards used for mobile devices and mobile telecommunications services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications set by the International Telecommunication Union. 3G is used in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

2G is a short notation for second-generation cellular network, a group of technology standards employed for cellular networks. 2G was commercially launched on the GSM standard in Finland by Radiolinja in 1991. After 2G was launched, the previous mobile wireless network systems were retroactively dubbed 1G. While radio signals on 1G networks are analog, radio signals on 2G networks are digital, though both systems use digital signaling to connect cellular radio towers to the rest of the mobile network system. 2G was superseded by 3G technology.

IMT-2000 is the global standard for third generation (3G) wireless communications as defined by the International Telecommunication Union.

IS-54 and IS-136 are second-generation (2G) mobile phone systems, known as Digital AMPS (D-AMPS), and most often referred to as TDMA, are a further development of the North American 1G mobile system Advanced Mobile Phone System (AMPS). It was once prevalent throughout the Americas, particularly in the United States and Canada since the first commercial network was deployed in 1993. D-AMPS is considered end-of-life, and existing networks have mostly been replaced by GSM/GPRS or CDMA2000 technologies.

The GPRS core network is the central part of the general packet radio service (GPRS) which allows 2G, 3G and WCDMA mobile networks to transmit Internet Protocol (IP) packets to external networks such as the Internet. The GPRS system is an integrated part of the GSM network switching subsystem.

<span class="mw-page-title-main">Base station subsystem</span> Section of cellular telephone network

The base station subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the network switching subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, transmission and reception over the air interface and many other tasks related to the radio network.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

GSM services are a standard collection of applications and features available over the Global System for Mobile Communications (GSM) to mobile phone subscribers all over the world. The GSM standards are defined by the 3GPP collaboration and implemented in hardware and software by equipment manufacturers and mobile phone operators. The common standard makes it possible to use the same phones with different companies' services, or even roam into different countries. GSM is the world's most dominant mobile phone standard.

Discontinuous transmission (DTX) is a means by which a mobile telephone is temporarily shut off or muted while the phone lacks a voice input.

<span class="mw-page-title-main">Mobile phone feature</span> Mobile phone capability or application

A mobile phone feature is a capability, service, or application that a mobile phone offers to its users. Mobile phones are often referred to as feature phones, and offer basic telephony. Handsets with more advanced computing ability through the use of native code try to differentiate their own products by implementing additional functions to make them more attractive to consumers. This has led to great innovation in mobile phone development over the past 20 years.

<span class="mw-page-title-main">Comparison of mobile phone standards</span>

This is a comparison of standards of wireless networking technologies for devices such as mobile phones. A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1979 and the early to mid-1980s.

<span class="mw-page-title-main">Mobile broadband modem</span> Modem providing Internet access via a wireless connection

A mobile broadband modem, also known as wireless modem or cellular modem, is a type of modem that allows a personal computer or a router to receive wireless Internet access via a mobile broadband connection instead of using telephone or cable television lines. A mobile Internet user can connect using a wireless modem to a wireless Internet Service Provider (ISP) to get Internet access.

References

  1. blueadmiral.com http://blueadmiral.com/Communications/comms/hscsd.shtml . Retrieved 18 June 2024.{{cite web}}: Missing or empty |title= (help)
  2. Hamiti, S.; Hakaste, M.; Moisio, M.; Nefedov, N.; Nikula, E.; Vilpponen, H. (1999). "Enhanced circuit switched data for real time services over GSM". Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324). pp. 578-582 vol.1. doi:10.1109/VETECF.1999.797200. ISBN   0-7803-5435-4.
  3. "Circuit Switched Data (CSD) service on 2G to be terminated in the Netherlands". Adesys B.V. Retrieved 18 June 2024.