4G

Last updated

4G is the fourth generation of broadband cellular network technology, succeeding 3G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

In telecommunications, broadband is wide bandwidth data transmission which transports multiple signals and traffic types. The medium can be coaxial cable, optical fiber, radio or twisted pair.

Cellular network communication network where the last link is wireless

A cellular network or mobile network is a communication network where the last link is wireless. The network is distributed over land areas called "cells", each served by at least one fixed-location transceiver, but more normally, three cell sites or base transceiver stations. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighbouring cells, to avoid interference and provide guaranteed service quality within each cell.

3G, short for third generation, is the third generation of wireless mobile telecommunications technology. It is the upgrade for 2G and 2.5G GPRS networks, for faster data transfer speed. This is based on a set of standards used for mobile devices and mobile telecommunications use services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

Contents

The first-release Long Term Evolution (LTE) standard was commercially deployed in Oslo, Norway, and Stockholm, Sweden in 2009, and has since been deployed throughout most parts of the world. It has, however, been debated whether first-release versions should be considered 4G LTE.

In telecommunication, Long-Term Evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA technologies. It increases the capacity and speed using a different radio interface together with core network improvements. The standard is developed by the 3GPP and is specified in its Release 8 document series, with minor enhancements described in Release 9. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. The different LTE frequencies and bands used in different countries mean that only multi-band phones are able to use LTE in all countries where it is supported.

Technical overview

In March 2009, the International Telecommunications Union-Radio communications sector (ITU-R) specified a set of requirements for 4G standards, named the International Mobile Telecommunications Advanced (IMT-Advanced) specification, setting peak speed requirements for 4G service at 100 megabits per second (Mbit/s)(=12.5 megabytes per second) for high mobility communication (such as from trains and cars) and 1 gigabit per second (Gbit/s) for low mobility communication (such as pedestrians and stationary users). [1]

ITU-R one of the three sectors of the ITU

The ITU Radiocommunication Sector (ITU-R) is one of the three sectors of the International Telecommunication Union (ITU) and is responsible for radio communication.

Since the first-release versions of Mobile WiMAX and LTE support much less than 1 Gbit/s peak bit rate, they are not fully IMT-Advanced compliant, but are often branded 4G by service providers. According to operators, a generation of the network refers to the deployment of a new non-backward-compatible technology. On December 6, 2010, ITU-R recognized that these two technologies, as well as other beyond-3G technologies that do not fulfill the IMT-Advanced requirements, could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced compliant versions and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed". [2]

Mobile WiMAX Release 2 (also known as WirelessMAN-Advanced or IEEE 802.16m') and LTE Advanced (LTE-A) are IMT-Advanced compliant backwards compatible versions of the above two systems, standardized during the spring 2011,[ citation needed ] and promising speeds in the order of 1 Gbit/s. Services were expected in 2013.[ needs update ]

LTE Advanced mobile communication standard and major enhancement of the Long Term Evolution (LTE) standard

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.

As opposed to earlier generations, a 4G system does not support traditional circuit-switched telephony service, but instead relies on all-Internet Protocol (IP) based communication such as IP telephony. As seen below, the spread spectrum radio technology used in 3G systems is abandoned in all 4G candidate systems and replaced by OFDMA multi-carrier transmission and other frequency-domain equalization (FDE) schemes, making it possible to transfer very high bit rates despite extensive multi-path radio propagation (echoes). The peak bit rate is further improved by smart antenna arrays for multiple-input multiple-output (MIMO) communications.

The Internet Protocol (IP) is the principal communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

Spread spectrum Spreading the frequency domain of a signal

In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal generated with a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of reasons, including the establishment of secure communications, increasing resistance to natural interference, noise and jamming, to prevent detection, and to limit power flux density.

Single-carrier FDMA (SC-FDMA) is a frequency-division multiple access scheme. It is also called linearly precoded OFDMA (LP-OFDMA). Like other multiple access schemes, it deals with the assignment of multiple users to a shared communication resource. SC-FDMA can be interpreted as a linearly precoded OFDMA scheme, in the sense that it has an additional DFT processing step preceding the conventional OFDMA processing.

Backgrounds of 4G

In the field of mobile communications, a "generation" generally refers to a change in the fundamental nature of the service, non-backwards-compatible transmission technology, higher peak bit rates, new frequency bands, wider channel frequency bandwidth in Hertz, and higher capacity for many simultaneous data transfers (higher system spectral efficiency in bit/second/Hertz/site).

New mobile generations have appeared about every ten years since the first move from 1981 analog (1G) to digital (2G) transmission in 1992. This was followed, in 2001, by 3G multi-media support, spread spectrum transmission and, at least, 200 kbit/s peak bit rate, in 2011/2012 to be followed by "real" 4G, which refers to all-Internet Protocol (IP) packet-switched networks giving mobile ultra-broadband (gigabit speed) access.

While the ITU has adopted recommendations for technologies that would be used for future global communications, they do not actually perform the standardization or development work themselves, instead relying on the work of other standard bodies such as IEEE, The Wi MAX Forum, and 3GPP.

In the mid-1990s, the ITU-R standardization organization released the IMT-2000 requirements as a framework for what standards should be considered 3G systems, requiring 200 kbit/s peak bit rate. In 2008, ITU -R specified the IMT – Advanced (International Telecommunications Advanced) requirements for 4G systems.

The fastest 3G-based standard in the UMTS family is the HSPA+ standard, which is commercially available since 2009 and offers 28 Mbit/s downstream (22 Mbit/s upstream) without MIMO, i.e. only with one antenna, and in 2011 accelerated up to 42 Mbit/s peak bit rate downstream using either DC-HSPA+ (simultaneous use of two 5 MHz UMTS carriers) [3] or 2x2 MIMO. In theory speeds up to 672 Mbit/s are possible, but have not been deployed yet. The fastest 3G-based standard in the CDMA2000 family is the EV-DO Rev. B, which is available since 2010 and offers 15.67 Mbit/s downstream.

Frequencies for 4G LTE networks

Mobile 4G network uses several frequencies:

700 MHz (Band 28 - Telstra / Optus)
850 MHz (Band 5 - Vodafone)
900 MHz (Band 8 - Telstra)
1800 MHz (Band 3 - Telstra / Optus / Vodafone)
2100 MHz (Band 1 - [a small number of Telstra sites] / Optus [Tasmania] / Vodafone)
2300 MHz (Band 40 - Optus [Vivid Wireless spectrum])
2600 MHz (Band 7 - Telstra / Optus)

In Australia, the 700 MHz band was previously used for analogue television and became operational with 4G in December 2014. [4] The 850 MHz band is currently operated as a 3G network by Telstra and as a 4G network by Vodafone in Australia. [5]

IMT-Advanced requirements

This article refers to 4G using IMT-Advanced (International Mobile Telecommunications Advanced), as defined by ITU-R. An IMT-Advanced cellular system must fulfill the following requirements: [6]

In September 2009, the technology proposals were submitted to the International Telecommunication Union (ITU) as 4G candidates. [8] Basically all proposals are based on two technologies.:

Implementations of Mobile WiMAX and first-release LTE are largely considered a stopgap solution that will offer a considerable boost until WiMAX 2 (based on the 802.16m specification) and LTE Advanced are deployed. The latter's standard versions were ratified in spring 2011, but are still far from being implemented. [6]

The first set of 3GPP requirements on LTE Advanced was approved in June 2008. [9] LTE Advanced was to be standardized in 2010 as part of Release 10 of the 3GPP specification. LTE Advanced will be based on the existing LTE specification Release 10 and will not be defined as a new specification series. A summary of the technologies that have been studied as the basis for LTE Advanced is included in a technical report. [10]

Some sources consider first-release LTE and Mobile WiMAX implementations as pre-4G or near-4G, as they do not fully comply with the planned requirements of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile.

Confusion has been caused by some mobile carriers who have launched products advertised as 4G but which according to some sources are pre-4G versions, commonly referred to as 3.9G, which do not follow the ITU-R defined principles for 4G standards, but today can be called 4G according to ITU-R. Vodafone NL for example, advertised LTE as 4G, while advertising now LTE Advanced as their '4G+' service which actually is (true) 4G. A common argument for branding 3.9G systems as new-generation is that they use different frequency bands from 3G technologies; that they are based on a new radio-interface paradigm; and that the standards are not backwards compatible with 3G, whilst some of the standards are forwards compatible with IMT-2000 compliant versions of the same standards.

System standards

IMT-2000 compliant 4G standards

As of October 2010, ITU-R Working Party 5D approved two industry-developed technologies (LTE Advanced and WirelessMAN-Advanced) [11] for inclusion in the ITU's International Mobile Telecommunications Advanced program (IMT-Advanced program), which is focused on global communication systems that will be available several years from now.

LTE Advanced

See also: 3GPP Long Term Evolution (LTE) below

LTE Advanced (Long Term Evolution Advanced) is a candidate for IMT-Advanced standard, formally submitted by the 4GPP organization to ITU-T in the fall 2009, and expected to be released in 2013. The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements. [12] LTE Advanced is essentially an enhancement to LTE. It is not a new technology, but rather an improvement on the existing LTE network. This upgrade path makes it more cost effective for vendors to offer LTE and then upgrade to LTE Advanced which is similar to the upgrade from WCDMA to HSPA. LTE and LTE Advanced will also make use of additional spectrums and multiplexing to allow it to achieve higher data speeds. Coordinated Multi-point Transmission will also allow more system capacity to help handle the enhanced data speeds. Release 10 of LTE is expected to achieve the IMT Advanced speeds. Release 8 currently supports up to 300 Mbit/s of download speeds which is still short of the IMT-Advanced standards. [13]

Data speeds of LTE-Advanced
LTE Advanced
Peak download1000 Mbit/s
Peak upload500 Mbit/s

IEEE 802.16m or WirelessMAN-Advanced

The IEEE 802.16m or WirelessMAN-Advanced evolution of 802.16e is under development, with the objective to fulfill the IMT-Advanced criteria of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile reception. [14]

Forerunner versions

3GPP Long Term Evolution (LTE)

See also: LTE Advanced above
Telia-branded Samsung LTE modem Samsung 4G LTE modem-4.jpg
Telia-branded Samsung LTE modem

The pre-4G 3GPP Long Term Evolution (LTE) technology is often branded "4G – LTE", but the first LTE release does not fully comply with the IMT-Advanced requirements. LTE has a theoretical net bit rate capacity of up to 100 Mbit/s in the downlink and 50 Mbit/s in the uplink if a 20 MHz channel is used — and more if multiple-input multiple-output (MIMO), i.e. antenna arrays, are used.

The physical radio interface was at an early stage named High Speed OFDM Packet Access (HSOPA), now named Evolved UMTS Terrestrial Radio Access (E-UTRA). The first LTE USB dongles do not support any other radio interface.

The world's first publicly available LTE service was opened in the two Scandinavian capitals, Stockholm (Ericsson and Nokia Siemens Networks systems) and Oslo (a Huawei system) on December 14, 2009, and branded 4G. The user terminals were manufactured by Samsung. [15] As of November 2012, the five publicly available LTE services in the United States are provided by MetroPCS, [16] Verizon Wireless, [17] AT&T Mobility, U.S. Cellular, [18] Sprint, [19] and T-Mobile US. [20]

T-Mobile Hungary launched a public beta test (called friendly user test) on 7 October 2011, and has offered commercial 4G LTE services since 1 January 2012.[ citation needed ]

In South Korea, SK Telecom and LG U+ have enabled access to LTE service since 1 July 2011 for data devices, slated to go nationwide by 2012. [21] KT Telecom closed its 2G service by March 2012, and complete the nationwide LTE service in the same frequency around 1.8 GHz by June 2012.

In the United Kingdom, LTE services were launched by EE in October 2012, [22] by O2 and Vodafone in August 2013, [23] and by Three in December 2013. [24]

Data speeds of LTE
LTE
Peak download100 Mbit/s
Peak upload50 Mbit/s

Mobile WiMAX (IEEE 802.16e)

The Mobile WiMAX (IEEE 802.16e-2005) mobile wireless broadband access (MWBA) standard (also known as WiBro in South Korea) is sometimes branded 4G, and offers peak data rates of 128 Mbit/s downlink and 56 Mbit/s uplink over 20 MHz wide channels. [ citation needed ]

In June 2006, the world's first commercial mobile WiMAX service was opened by KT in Seoul, South Korea. [25]

Sprint has begun using Mobile WiMAX, as of 29 September 2008, branding it as a "4G" network even though the current version does not fulfill the IMT Advanced requirements on 4G systems. [26]

In Russia, Belarus and Nicaragua WiMax broadband internet access were offered by a Russian company Scartel, and was also branded 4G, Yota. [27]

Data speeds of WiMAX
WiMAX
Peak download128 Mbit/s
Peak upload56 Mbit/s

In the latest version of the standard, WiMax 2.1, the standard has been updated to be not compatible with earlier WiMax standard, and is instead interchangeable with LTE-TDD system, effectively merging WiMax standard with LTE.

TD-LTE for China market

Just as Long-Term Evolution (LTE) and WiMAX are being vigorously promoted in the global telecommunications industry, the former (LTE) is also the most powerful 4G mobile communications leading technology and has quickly occupied the Chinese market. TD-LTE, one of the two variants of the LTE air interface technologies, is not yet mature, but many domestic and international wireless carriers are, one after the other turning to TD-LTE.

IBM's data shows that 67% of the operators are considering LTE because this is the main source of their future market. The above news also confirms IBM's statement that while only 8% of the operators are considering the use of WiMAX, WiMAX can provide the fastest network transmission to its customers on the market and could challenge LTE.

TD-LTE is not the first 4G wireless mobile broadband network data standard, but it is China's 4G standard that was amended and published by China's largest telecom operator – China Mobile. After a series of field trials, is expected to be released into the commercial phase in the next two years. Ulf Ewaldsson, Ericsson's vice president said: "the Chinese Ministry of Industry and China Mobile in the fourth quarter of this year will hold a large-scale field test, by then, Ericsson will help the hand." But viewing from the current development trend, whether this standard advocated by China Mobile will be widely recognized by the international market is still debatable.

Discontinued candidate systems

UMB (formerly EV-DO Rev. C)

UMB (Ultra Mobile Broadband) was the brand name for a discontinued 4G project within the 3GPP2 standardization group to improve the CDMA2000 mobile phone standard for next generation applications and requirements. In November 2008, Qualcomm, UMB's lead sponsor, announced it was ending development of the technology, favouring LTE instead. [28] The objective was to achieve data speeds over 275 Mbit/s downstream and over 75 Mbit/s upstream.

Flash-OFDM

At an early stage the Flash-OFDM system was expected to be further developed into a 4G standard.

iBurst and MBWA (IEEE 802.20) systems

The iBurst system (or HC-SDMA, High Capacity Spatial Division Multiple Access) was at an early stage considered to be a 4G predecessor. It was later further developed into the Mobile Broadband Wireless Access (MBWA) system, also known as IEEE 802.20.

Principal technologies in all candidate systems

Key features

The following key features can be observed in all suggested 4G technologies:

As opposed to earlier generations, 4G systems do not support circuit switched telephony. IEEE 802.20, UMB and OFDM standards [30] lack soft-handover support, also known as cooperative relaying.

Multiplexing and access schemes

Recently, new access schemes like Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA), Interleaved FDMA, and Multi-carrier CDMA (MC-CDMA) are gaining more importance for the next generation systems. These are based on efficient FFT algorithms and frequency domain equalization, resulting in a lower number of multiplications per second. They also make it possible to control the bandwidth and form the spectrum in a flexible way. However, they require advanced dynamic channel allocation and adaptive traffic scheduling.

WiMax is using OFDMA in the downlink and in the uplink. For the LTE (telecommunication), OFDMA is used for the downlink; by contrast, Single-carrier FDMA is used for the uplink since OFDMA contributes more to the PAPR related issues and results in nonlinear operation of amplifiers. IFDMA provides less power fluctuation and thus requires energy-inefficient linear amplifiers. Similarly, MC-CDMA is in the proposal for the IEEE 802.20 standard. These access schemes offer the same efficiencies as older technologies like CDMA. Apart from this, scalability and higher data rates can be achieved.

The other important advantage of the above-mentioned access techniques is that they require less complexity for equalization at the receiver. This is an added advantage especially in the MIMO environments since the spatial multiplexing transmission of MIMO systems inherently require high complexity equalization at the receiver.

In addition to improvements in these multiplexing systems, improved modulation techniques are being used. Whereas earlier standards largely used Phase-shift keying, more efficient systems such as 64QAM are being proposed for use with the 3GPP Long Term Evolution standards.

IPv6 support

Unlike 3G, which is based on two parallel infrastructures consisting of circuit switched and packet switched network nodes, 4G is based on packet switching only. This requires low-latency data transmission.

As IPv4 addresses are (nearly) exhausted, [Note 1] [31] IPv6 is essential to support the large number of wireless-enabled devices that communicate using IP. By increasing the number of IP addresses available, IPv6 removes the need for network address translation (NAT), a method of sharing a limited number of addresses among a larger group of devices, which has a number of problems and limitations. When using IPv6, some kind of NAT is still required for communication with legacy IPv4 devices that are not also IPv6-connected.

As of June 2009, Verizon has posted Specifications that require any 4G devices on its network to support IPv6. [32]

Advanced antenna systems

The performance of radio communications depends on an antenna system, termed smart or intelligent antenna. Recently, multiple antenna technologies are emerging to achieve the goal of 4G systems such as high rate, high reliability, and long range communications. In the early 1990s, to cater for the growing data rate needs of data communication, many transmission schemes were proposed. One technology, spatial multiplexing, gained importance for its bandwidth conservation and power efficiency. Spatial multiplexing involves deploying multiple antennas at the transmitter and at the receiver. Independent streams can then be transmitted simultaneously from all the antennas. This technology, called MIMO (as a branch of intelligent antenna), multiplies the base data rate by (the smaller of) the number of transmit antennas or the number of receive antennas. Apart from this, the reliability in transmitting high speed data in the fading channel can be improved by using more antennas at the transmitter or at the receiver. This is called transmit or receive diversity. Both transmit/receive diversity and transmit spatial multiplexing are categorized into the space-time coding techniques, which does not necessarily require the channel knowledge at the transmitter. The other category is closed-loop multiple antenna technologies, which require channel knowledge at the transmitter.

Open-wireless Architecture and Software-defined radio (SDR)

One of the key technologies for 4G and beyond is called Open Wireless Architecture (OWA), supporting multiple wireless air interfaces in an open architecture platform.

SDR is one form of open wireless architecture (OWA). Since 4G is a collection of wireless standards, the final form of a 4G device will constitute various standards. This can be efficiently realized using SDR technology, which is categorized to the area of the radio convergence.

History of 4G and pre-4G technologies

The 4G system was originally envisioned by the DARPA - the US Defense Advanced Research Projects Agency.[ citation needed ] DARPA selected the distributed architecture and end-to-end Internet protocol (IP), and believed at an early stage in peer-to-peer networking in which every mobile device would be both a transceiver and a router for other devices in the network, eliminating the spoke-and-hub weakness of 2G and 3G cellular systems. [33] [ page needed ] Since the 2.5G GPRS system, cellular systems have provided dual infrastructures: packet switched nodes for data services, and circuit switched nodes for voice calls. In 4G systems, the circuit-switched infrastructure is abandoned and only a packet-switched network is provided, while 2.5G and 3G systems require both packet-switched and circuit-switched network nodes, i.e. two infrastructures in parallel. This means that in 4G traditional voice calls are replaced by IP telephony.

Since 2009 the LTE-Standard has strongly evolved over the years, resulting in many deployments by various operators across the globe. For an overview of commercial LTE networks and their respective historic development see: List of LTE networks. Among the vast range of deployment, s many operators are considering the deployment and operation of LTE networks. A compilation of planned LTE deployments can be found at: List of planned LTE networks.

Disadvantages

4G introduces a potential inconvenience for those who travel internationally or wish to switch carriers. In order to make and receive 4G voice calls, the subscriber handset must not only have a matching frequency band (and in some cases require unlocking), it must also have the matching enablement settings for the local carrier and/or country. While a phone purchased from a given carrier can be expected to work with that carrier, making 4G voice calls on another carrier's network (including international roaming) may be impossible without a software update specific to the local carrier and the phone model in question, which may or may not be available (although fallback to 3G for voice calling may still be possible if a 3G network is available with a matching frequency band). [60]

Beyond 4G research

A major issue in 4G systems is to make the high bit rates available in a larger portion of the cell, especially to users in an exposed position in between several base stations. In current research, this issue is addressed by macro-diversity techniques, also known as group cooperative relay, and also by Beam-Division Multiple Access (BDMA). [61]

Pervasive networks are an amorphous and at present entirely hypothetical concept where the user can be simultaneously connected to several wireless access technologies and can seamlessly move between them (See vertical handoff, IEEE 802.21). These access technologies can be Wi-Fi, UMTS, EDGE, or any other future access technology. Included in this concept is also smart-radio (also known as cognitive radio) technology to efficiently manage spectrum use and transmission power as well as the use of mesh routing protocols to create a pervasive network.

See also

Notes

  1. The exact exhaustion status is difficult to determine, as it is unknown how many unused addresses exist at ISPs, and how many of the addresses that are permanently unused by their owners can still be freed and transferred to others.

Related Research Articles

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunications Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

WiMAX wireless broadband standard

WiMAX is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options.

Evolution-Data Optimized

Evolution-Data Optimized is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. EV-DO is an evolution of the CDMA2000 (IS-2000) standard which supports high data rates and can be deployed alongside a wireless carrier's voice services. It uses advanced multiplexing techniques including code division multiple access (CDMA) as well as time division multiplexing (TDM) to maximize throughput. It is a part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.

Orthogonal frequency-division multiple access multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

E-UTRA air interface of 3GPP LTE upgrade path for mobile networks

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (EnodeB).

High Speed Packet Access Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further improved 3GPP standard, Evolved High Speed Packet Access, was released late in 2008 with subsequent worldwide adoption beginning in 2010. The newer standard allows bit-rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink. However, these speeds are rarely achieved in practice.

Mobile broadband

Mobile broadband is the marketing term for wireless Internet access through a portable modem, USB wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.

Evolved High Speed Packet Access technical standard for wireless, broadband telecommunication

Evolved High Speed Packet Access, or HSPA+, or HSPA(Plus), or HSPAP is a technical standard for wireless broadband telecommunication. It is the second phase of HSPA which has been introduced in 3GPP release 7 and being further improved in later 3GPP releases. HSPA+ can achieve data rates of up to 42.2 Mbit/s. It introduces antenna array technologies such as beamforming and multiple-input multiple-output communications (MIMO). Beam forming focuses the transmitted power of an antenna in a beam towards the user's direction. MIMO uses multiple antennas at the sending and receiving side. Further releases of the standard have introduced dual carrier operation, i.e. the simultaneous use of two 5 MHz carriers. The technology also delivers significant battery life improvements and dramatically quicker wake-from-idle time, delivering a true always-on connection. HSPA+ is an evolution of HSPA that upgrades the existing 3G network and provides a method for telecom operators to migrate towards 4G speeds that are more comparable to the initially available speeds of newer LTE networks without deploying a new radio interface. HSPA+ should not be confused with LTE though, which uses an air interface based on Orthogonal frequency-division multiple access modulation and multiple access.

MIMO Use of multiple antennas in radio

In radio, multiple-input and multiple-output, or MIMO, is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution. More recently, MIMO has been applied to power-line communication for 3-wire installations as part of ITU G.hn standard and HomePlug AV2 specification.

Unifi Mobile

unifi Mobile is a Malaysian converged telecommunications, broadband and 4G service provider. Originally known as Packet One Networks (P1), the company was founded in 2002 and is a subsidiary of Green Packet Berhad. In March 2007, P1 was one of four companies awarded 2.3 GHz spectrum licenses by the Malaysian Government to deploy 4G WiMAX services throughout Malaysia. In August 2008, P1 became the first company to launch commercial WiMAX services in Malaysia.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

Altair Semiconductor is a developer of high performance single-mode Long Term Evolution (LTE) chipsets. The company's product portfolio includes baseband processors, RF transceivers and a range of reference hardware products. Founded in 2005, Altair employs 190 employees in its Hod Hasharon, Israel headquarters and R&D center, and has regional offices in the United States, Japan, China, Taiwan and India. Altair Semiconductor was the first chipset vendor to receive certification from Verizon Wireless to run on its 4G LTE network. Altair has also powered several devices launched on Verizon's network including the Ellipsis 7 tablet and HP Chromebook 11.6"LTE. In January 2016 it was announced that Sony was acquiring Altair for $212 Million.

HiSilicon Chinese fabless semiconductor manufacturing company, fully owned by Huawei

HiSilicon is a Chinese fabless semiconductor company based in Shenzhen, Guangdong and fully owned by Huawei.

The first smart antennas were developed for military communications and intelligence gathering. The growth of cellular telephone in the 1980s attracted interest in commercial applications. The upgrade to digital radio technology in the mobile phone, indoor wireless network, and satellite broadcasting industries created new opportunities for smart antennas in the 1990s, culminating in the development of the MIMO technology used in 4G wireless networks.

Per-user unitary rate control (PU2RC) is a multi-user MIMO (multiple-input and multiple-output) scheme. PU2RC uses both transmission pre-coding and multi-user scheduling. By doing that, the network capacity is further enhanced than the capacity of the single-user MIMO scheme.

The Intel XMM modems are a series of 4G LTE, LTE Advanced, LTE Advanced Pro and 5G modems found in many phones, tablets, laptops and wearables developed by Intel Mobile Communications. Intel Mobile Communications was formed after Intel acquired the Wireless Solutions (WLS) division of Infineon early in 2011 for US$1.4 billion.

References

  1. 1 2 3 4 ITU-R, Report M.2134, Requirements related to technical performance for IMT-Advanced radio interface(s), Approved in November 2008
  2. 1 2 "ITU World Radiocommunication Seminar highlights future communication technologies". International Telecommunication Union.
  3. 62 commercial networks support DC-HSPA+, drives HSPA investments LteWorld February 7, 2012
  4. "Telstra 4G (LTE) on the Next G Network - Telstra". February 7, 2012. Archived from the original on February 7, 2012.
  5. "Sold! ACMA completes high-value spectrum auction". ACMA. Retrieved September 4, 2018.
  6. 1 2 Vilches, J. (April 29, 2010). "Everything You Need To Know About 4G Wireless Technology". TechSpot. Retrieved January 11, 2016.
  7. Rumney, Moray (September 2008). "IMT-Advanced: 4G Wireless Takes Shape in an Olympic Year" (PDF). Agilent Measurement Journal. Archived from the original (PDF) on January 17, 2016.
  8. "2009-12: The way of LTE towards 4G". Nomor Research. Archived from the original on January 17, 2016. Retrieved January 11, 2016.
  9. "3GPP specification: Requirements for further advancements for E-UTRA (LTE Advanced)". 3GPP. Retrieved August 21, 2013.
  10. "3GPP Technical Report: Feasibility study for Further Advancements for E-UTRA (LTE Advanced)". 3GPP. Retrieved August 21, 2013.
  11. "ITU paves way for next-generation 4G mobile technologies" (Press release). ITU. October 21, 2010.
  12. Parkvall, Stefan; Dahlman, Erik; Furuskär, Anders; Jading, Ylva; Olsson, Magnus; Wänstedt, Stefan; Zangi, Kambiz (September 21–24, 2008). LTE Advanced – Evolving LTE towards IMT-Advanced (PDF). Vehicular Technology Conference Fall 2008. Ericsson Research. Stockholm. Archived from the original (PDF) on March 7, 2012. Retrieved November 26, 2010.
  13. Parkvall, Stefan; Astely, David (April 2009). "The evolution of LTE toward LTE Advanced". Journal of Communications . 4 (3): 146–54. doi:10.4304/jcm.4.3.146-154. Archived from the original on August 10, 2011.
  14. "The Draft IEEE 802.16m System Description Document" (PDF). ieee802.org. April 4, 2008.
  15. "how to download youtube videos in jio phone – 4G/LTE — Ericsson, Samsung Make LTE Connection — Telecom News Analysis". quickblogsoft.blogspot.com. Archived from the original on January 3, 2019. Retrieved January 3, 2019.
  16. "MetroPCS Launches First 4G LTE Services in the United States and Unveils World's First Commercially Available 4G LTE Phone". MetroPCS IR. September 21, 2010. Archived from the original on September 24, 2010. Retrieved April 8, 2011.
  17. Jason Hiner (January 12, 2011). "How AT&T and T-Mobile conjured 4G networks out of thin air". TechRepublic. Retrieved April 5, 2011.
  18. Brian Bennet (April 5, 2012). "Meet U.S. Cellular's first 4G LTE phone: Samsung Galaxy S Aviator". CNet. Retrieved April 11, 2012.
  19. "Sprint 4G LTE Launching in 5 Cities July 15". PC Magazine. June 27, 2012. Retrieved November 3, 2012.
  20. "We have you covered like nobody else". T-Mobile USA. April 6, 2013. Archived from the original on March 29, 2013. Retrieved April 6, 2013.
  21. "SK Telecom and LG U+ launch LTE in Seoul, fellow South Koreans seethe with envy". July 5, 2011. Retrieved July 13, 2011.
  22. "EE launches Superfast 4G and Fibre for UK consumers and businesses today". EE. October 30, 2012. Retrieved August 29, 2013.
  23. Miller, Joe (August 29, 2013). "Vodafone and O2 begin limited roll-out of 4G networks". BBC News. Retrieved August 29, 2013.
  24. Orlowski, Andrew (December 5, 2013). "Three offers free US roaming, confirms stealth 4G rollout". The Register. Retrieved December 6, 2013.
  25. Shukla, Anuradha (October 10, 2011). "Super-Fast 4G Wireless Service Launching in South Korea". Asia-Pacific Business and Technology Report. Retrieved November 24, 2011.
  26. "Sprint announces seven new WiMAX markets, says 'Let AT&T and Verizon yak about maps and 3G coverage'". Engadget. March 23, 2010. Archived from the original on March 25, 2010. Retrieved April 8, 2010.
  27. "UPDATE 1-Russia's Yota drops WiMax in favour of LTE". May 21, 2010 via Reuters.
  28. Qualcomm halts UMB project, Reuters, November 13th, 2008
  29. G. Fettweis; E. Zimmermann; H. Bonneville; W. Schott; K. Gosse; M. de Courville (2004). "High Throughput WLAN/WPAN" (PDF). WWRF. Archived from the original (PDF) on February 16, 2008.
  30. "4G standards that lack cooperative relaying".
  31. For details, see the article on IPv4 address exhaustion
  32. Morr, Derek (June 9, 2009). "Verizon mandates IPv6 support for next-gen cell phones" . Retrieved June 10, 2009.
  33. Zheng, P; Peterson, L; Davie, B; Farrel, A (2009). "Wireless Networking Complete". Morgan KaufmannCite journal requires |journal= (help)
  34. Alabaster, Jay (August 20, 2012). "Japan's NTT DoCoMo signs up 1 million LTE users in a month, hits 5 million total". Network World. IDG. Archived from the original on December 3, 2013. Retrieved October 29, 2013.
  35. "KT Launches Commercial WiBro Services in South Korea". WiMAX Forum . November 15, 2005. Archived from the original on May 29, 2010. Retrieved June 23, 2010.
  36. "KT's Experience In Development Projects". March 2011.
  37. "4G Mobile Broadband". Sprint. Archived from the original on February 22, 2008. Retrieved March 12, 2008.
  38. Federal Reserve Bank of Minneapolis. "Consumer Price Index (estimate) 1800–" . Retrieved January 2, 2019.
  39. "DoCoMo Achieves 5 Gbit/s Data Speed". NTT DoCoMo Press. February 9, 2007.
  40. Reynolds, Melanie (September 14, 2007). "NTT DoCoMo develops low power chip for 3G LTE handsets". Electronics Weekly . Archived from the original on September 27, 2011. Retrieved April 8, 2010.
  41. "Auctions Schedule". FCC . Archived from the original on January 24, 2008. Retrieved January 8, 2008.
  42. "European Commission proposes TV spectrum for WiMax". zdnetasia.com. Archived from the original on December 14, 2007. Retrieved January 8, 2008.
  43. "Skyworks Rolls Out Front-End Module for 3.9G Wireless Applications. (Skyworks Solutions Inc.)" (free registration required). Wireless News. February 14, 2008. Retrieved September 14, 2008.
  44. "Wireless News Briefs — February 15, 2008". WirelessWeek. February 15, 2008. Archived from the original on August 19, 2015. Retrieved September 14, 2008.
  45. "Skyworks Introduces Industry's First Front-End Module for 3.9G Wireless Applications". Skyworks press release. February 11, 2008. Retrieved September 14, 2008.
  46. ITU-R Report M.2134, “Requirements related to technical performance for IMT-Advanced radio interface(s),” November 2008.
  47. "Nortel and LG Electronics Demo LTE at CTIA and with High Vehicle Speeds :: Wireless-Watch Community". Archived from the original on June 6, 2008.
  48. "Scartel and HTC Launch World's First Integrated GSM/WiMAX Handset" (Press release). HTC Corporation. November 12, 2008. Archived from the original on November 22, 2008. Retrieved March 1, 2011.
  49. "San Miguel and Qatar Telecom Sign MOU". Archived from the original on February 18, 2009. Retrieved 2009-02-18.CS1 maint: BOT: original-url status unknown (link) San Miguel Corporation, December 15, 2008
  50. "LRTC to Launch Lithuania's First Mobile WiMAX 4G Internet Service" (Press release). WiMAX Forum. March 3, 2009. Archived from the original on June 12, 2010. Retrieved November 26, 2010.
  51. "4G Coverage and Speeds". Sprint . Archived from the original on April 5, 2010. Retrieved November 26, 2010.
  52. "Teliasonera First To Offer 4G Mobile Services". The Wall Street Journal . December 14, 2009. Archived from the original on January 14, 2010.
  53. NetCom.no – NetCom 4G (in English)
  54. "TeliaSonera´s 4G Speed Test – looking good". Daily Mobile. Archived from the original on April 19, 2012. Retrieved January 11, 2016.
  55. Anand Lal Shimpi (June 28, 2010). "The Sprint HTC EVO 4G Review". AnandTech . Retrieved March 19, 2011.
  56. "Verizon launches its first LTE handset". Telegeography.com. March 16, 2011. Retrieved July 31, 2012.
  57. "HTC ThunderBolt is officially Verizon's first LTE handset, come March 17th". Phonearena.com. 2011. Retrieved July 31, 2012.
  58. "demonstrates Broadcast Video/TV over LTE". Ericsson. Retrieved July 31, 2012.
  59. "What is VoLTE?". 4g.co.uk. Retrieved May 8, 2019.
  60. IT R&D program of MKE/IITA: 2008-F-004-01 “5G mobile communication systems based on beam-division multiple access and relays with group cooperation”.
Preceded by
3rd Generation (3G)
Mobile Telephony Generations Succeeded by
5th Generation (5G)
(currently under formal research & development)