Cooperative diversity

Last updated

Cooperative diversity is a cooperative multiple antenna technique for improving or maximising total network channel capacities for any given set of bandwidths which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multihop networks. A conventional single hop system uses direct transmission where a receiver decodes the information only based on the direct signal while regarding the relayed signal as interference, whereas the cooperative diversity considers the other signal as contribution. That is, cooperative diversity decodes the information from the combination of two signals. Hence, it can be seen that cooperative diversity is an antenna diversity that uses distributed antennas belonging to each node in a wireless network. [1] Note that user cooperation is another definition of cooperative diversity. User cooperation [2] considers an additional fact that each user relays the other user's signal while cooperative diversity can be also achieved by multi-hop relay networking systems.

Contents

The cooperative diversity technique is a kind of multi-user MIMO technique.

Relaying Strategies

The simplest cooperative relaying network consists of three nodes, namely source, destination, and a third node supporting the direct communication between source and destination denoted as relay. If the direct transmission of a message from source to destination is not (fully) successful, the overheard information from the source is forwarded by the relay to reach the destination via a different path. Since the two communications took a different path and take place one after another, this example implements the concept of space diversity and time diversity. [3]

The relaying strategies can be further distinguished by the amplify-and-forward, decode-and-forward, and compress-and-forward strategies: [4]

Relay Transmission Topology

Serial relay transmission is used for long distance communication and range-extension in shadowy regions. It provides power gain. In this topology signals propagate from one relay to another relay and the channels of neighboring hop are orthogonal to avoid any interference.

Parallel relay transmission may be used where serial relay transmission suffers from multi-path fading. For outdoors and non-line-of-sight propagation, signal wavelength may be large and installation of multiple antennas are not possible. To increase the robustness against multi-path fading, parallel relay transmission can be used. In this topology, signals propagate through multiple relay paths in the same hop and the destination combines the signals received with the help of various combining schemes. It provides power gain and diversity gain simultaneously.

System model

We consider a wireless relay system that consists of source, relay and destination nodes. It is assumed that the channel is in a half-duplex, orthogonal and amplify-and-forward relaying mode. Differently to the conventional direct transmission system, we exploit a time division relaying function where this system can deliver information with two temporal phases.

On the first phase, the source node broadcasts information toward both the destination and the relay nodes. The received signal at the destination and the relay nodes are respectively written as:

where is the channel from the source to the destination nodes, is the channel from the source to the relay node, is the noise signal added to and is the noise signal added to .

On the second phase, the relay can transmit its received signal to the destination node except the direct transmission mode.

Signal Decoding

We introduce four schemes to decode the signal at the destination node which are the direct scheme, the non-cooperative scheme, the cooperative scheme and the adaptive scheme. Except the direct scheme, the destination node uses the relayed signal in all other schemes.

Direct Scheme

In the direct scheme, the destination decodes the data using the signal received from the source node on the first phase where the second phase transmission is omitted so that the relay node is not involved in transmission. The decoding signal received from the source node is written as:

While the advantage of the direct scheme is its simplicity in terms of the decoding processing, the received signal power can be severely low if the distance between the source node and the destination node is large. Thus, in the following we consider non-cooperative scheme which exploits signal relaying to improve the signal quality.

Non-cooperative Scheme

In the non-cooperative scheme, the destination decodes the data using the signal received from the relay on the second phase, which results in the signal power boosting gain. The signal received from the relay node which retransmits the signal received from the source node is written as:

where is the channel from the relay to the destination nodes and is the noise signal added to .

The reliability of decoding can be low since the degree of freedom is not increased by signal relaying. There is no increase in the diversity order since this scheme exploits only the relayed signal and the direct signal from the source node is either not available or is not accounted for. When we can take advantage of such a signal and increase in diversity order results. Thus, in the following we consider the cooperative scheme which decodes the combined signal of both the direct and relayed signals.

Cooperative Scheme

For cooperative decoding, the destination node combines two signals received from the source and the relay nodes which results in the diversity advantage. The whole received signal vector at the destination node can be modeled as:

where and are the signals received at the destination node from the source and relay nodes, respectively. As a linear decoding technique, the destination combines elements of the received signal vector as follows:

where is the linear combining weight which can be obtained to maximize signal-to-noise ratio (SNR) of the combined signals subject to given the complexity level of the weight calculation.

Adaptive Scheme

Adaptive scheme selects one of the three modes described above which are the direct, the non-cooperative, and the cooperative schemes relying on the network channel state information and other network parameters.

Trade-off

It is noteworthy that cooperative diversity can increase the diversity gain at the cost of losing the wireless resource such as frequency, time and power resources for the relaying phase. Wireless resources are wasted since the relay node uses wireless resources to relay the signal from the source to the destination node. Hence, it is important to remark that there is trade-off between the diversity gain and the waste of the spectrum resource in cooperative diversity.

Channel Capacity of Cooperative Diversity

In June 2005, A. Høst-Madsen published a paper in-depth analyzing the channel capacity of the cooperative relay network. [6]

We assume that the channel from the source node to the relay node, from the source node to the destination node, and from the relay node to the destination node are where the source node, the relay node, and the destination node are denoted node 1, node 2, and node 3, subsequently.

The capacity of cooperative relay channels

Using the max-flow min-cut theorem yields the upper bound of full duplex relaying

where and are transmit information at the source node and the relay node respectively and and are received information at the relay node and the destination node respectively. Note that the max-flow min-cut theorem states that the maximum amount of flow is equal to the capacity of a minimum cut, i.e., dictated by its bottleneck. The capacity of the broadcast channel from to and with given is

while the capacity of the multiple access channel from and to is

where is the amount of correlation between and . Note that copies some part of for cooperative relaying capability. Using cooperative relaying capability at the relay node improves the performance of reception at the destination node. Thus, the upper bound is rewritten as

Achievable rate of a decode-and-forward relay

Using a relay which decodes and forwards its captured signal yields the achievable rate as follows:

where the broadcast channel is reduced to the point-to-point channel because of decoding at the relay node, i.e., is reduced to . The capacity of the reduced broadcast channel is

Thus, the achievable rate is rewritten as

Time-Division Relaying

The capacity of the TD relay channel is upper-bounded by

with

Applications

In a cognitive radio system, unlicensed secondary users can use the resources which is licensed for primary users. When primary users want to use their licensed resources, secondary users has to vacate these resources. Hence secondary users have to constantly sense the channel for detecting the presence of primary user. It is very challenging to sense the activity of spatially distributed primary users in wireless channel. Spatially distributed nodes can improve the channel sensing reliability by sharing the information and reduce the probability of false alarming.

A wireless ad hoc network is an autonomous and self organizing network without any centralized controller or pre-established infrastructure. In this network randomly distributed nodes forms a temporary functional network and support seamless leaving or joining of nodes. Such networks have been successfully deployed for military communication and have lot of potential for civilian applications, to include commercial and educational use, disaster management, road vehicle network etc. [7]

A wireless sensor network can use cooperative relaying to reduce the energy consumption in sensor nodes, hence lifetime of sensor network increases. Due to nature of wireless medium, communication through weaker channels requires huge energy as compared to relatively stronger channels. Careful incorporation of relay cooperation into routing process can selects better communication links and precious battery power can be saved.

See also

Systems

Technologies

Related Research Articles

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Channel capacity, in electrical engineering, computer science, and information theory, is the tight upper bound on the rate at which information can be reliably transmitted over a communication channel.

In information theory, the cross-entropy between two probability distributions and over the same underlying set of events measures the average number of bits needed to identify an event drawn from the set if a coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .

The routing and wavelength assignment (RWA) problem is an optical networking problem with the goal of maximizing the number of optical connections.

Proportional-fair scheduling is a compromise-based scheduling algorithm. It is based upon maintaining a balance between two competing interests: Trying to maximize the total throughput of the network while at the same time allowing all users at least a minimal level of service. This is done by assigning each data flow a data rate or a scheduling priority that is inversely proportional to its anticipated resource consumption.

In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations.

In information theory, a relay channel is a probability model of the communication between a sender and a receiver aided by one or more intermediate relay nodes.

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that

In the field of wireless communication, macrodiversity is a kind of space diversity scheme using several receiver or transmitter antennas for transferring the same signal. The distance between the transmitters is much longer than the wavelength, as opposed to microdiversity where the distance is in the order of or shorter than the wavelength.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

Multi-user MIMO (MU-MIMO) is a set of multiple-input and multiple-output (MIMO) technologies for multipath wireless communication, in which multiple users or terminals, each radioing over one or more antennas, communicate with one another. In contrast, single-user MIMO (SU-MIMO) involves a single multi-antenna-equipped user or terminal communicating with precisely one other similarly equipped node. Analogous to how OFDMA adds multiple-access capability to OFDM in the cellular-communications realm, MU-MIMO adds multiple-user capability to MIMO in the wireless realm.

<span class="mw-page-title-main">Random geometric graph</span> In graph theory, the mathematically simplest spatial network

In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.

In radio, cooperative multiple-input multiple-output is a technology that can effectively exploit the spatial domain of mobile fading channels to bring significant performance improvements to wireless communication systems. It is also called network MIMO, distributed MIMO, virtual MIMO, and virtual antenna arrays.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: Lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector space or free modules are generally considered.

The term Blahut–Arimoto algorithm is often used to refer to a class of algorithms for computing numerically either the information theoretic capacity of a channel, the rate-distortion function of a source or a source encoding. They are iterative algorithms that eventually converge to one of the maxima of the optimization problem that is associated with these information theoretic concepts.

In mathematics and telecommunications, stochastic geometry models of wireless networks refer to mathematical models based on stochastic geometry that are designed to represent aspects of wireless networks. The related research consists of analyzing these models with the aim of better understanding wireless communication networks in order to predict and control various network performance metrics. The models require using techniques from stochastic geometry and related fields including point processes, spatial statistics, geometric probability, percolation theory, as well as methods from more general mathematical disciplines such as geometry, probability theory, stochastic processes, queueing theory, information theory, and Fourier analysis.

Mikael Skoglund is an academic born 1969 in Kungälv, Sweden. He is a professor of Communication theory, and the Head of the Division of Information Science and Engineering of the Department of Intelligent Systems at KTH Royal Institute of Technology. His research focuses on source-channel coding, signal processing, information theory, privacy, security, and with a particular focus on how information theory applies to wireless communications.

References

  1. J. N. Laneman; D. N. C. Tse; G. W. Wornell (2004). "Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior" (PDF). IEEE Transactions on Information Theory. 50 (12): 3062–3080. doi:10.1109/TIT.2004.838089. S2CID   11053095.
  2. A. Sendonaris; E. Erkip; B. Aazhang (2003). "User cooperation diversity. Part I. System description". IEEE Transactions on Communications. 51 (11): 1927–1938. CiteSeerX   10.1.1.11.7396 . doi:10.1109/TCOMM.2003.818096.
  3. W. Elmenreich; N. Marchenko; H. Adam; C. Hofbauer; G. Brandner; C. Bettstetter; M. Huemer (2008). "Building blocks of cooperative relaying in wireless systems" (PDF). Elektrotechnik und Informationstechnik. 125 (10): 353–359. CiteSeerX   10.1.1.302.8601 . doi:10.1007/s00502-008-0571-7. S2CID   14232813.
  4. Stefan Berger. "Coherent Cooperative Relaying in Low Mobility Wireless Multiuser Networks". 2010. p. 4-5.
  5. S. Simoens; O. Muñoz; J. Vidal; A. Del. Coso (2010). "Compress-and-Forward Cooperative MIMO Relaying with Full Channel State Information" (PDF). IEEE Transactions on Signal Processing. 58 (2): 781. doi:10.1109/TSP.2009.2030622. hdl: 2117/8075 . S2CID   14381688.
  6. A. Høst-Madsen; J. Zhang (June 2005). "Capacity bounds and power allocation for the wireless relay channel" (PDF). IEEE Trans. Inf. Theory. 51 (6): 2020–2040. doi:10.1109/TIT.2005.847703. S2CID   337567.
  7. M. Eriksson, A. Mahmud, “Dynamic Single Frequency Networks in Wireless Multihop Networks - Energy aware routing algorithms with performance analysis” [ permanent dead link ], 2010 IEEE International Conference on Computer and Information Technology, CIT’10, Bradford, UK, June 2010.