In wireless communications, fading is the variation of signal attenuation over variables like time, geographical position, and radio frequency. Fading is often modeled as a random process. In wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading, weather (particularly rain), or shadowing from obstacles affecting the wave propagation, sometimes referred to as shadow fading.
A fading channel is a communication channel that experiences fading.
The presence of reflectors in the environment surrounding a transmitter and receiver create multiple paths that a transmitted signal can traverse. As a result, the receiver sees the superposition of multiple copies of the transmitted signal, each traversing a different path. Each signal copy will experience differences in attenuation, delay and phase shift while traveling from the source to the receiver. This can result in either constructive or destructive interference, which amplifies or attenuates the signal power seen at the receiver. Strong destructive interference is frequently referred to as a deep fade and may result in temporary failure of communication due to a severe drop in the channel signal-to-noise ratio.
A common example of deep fade is the experience of stopping at a traffic light and hearing an FM broadcast degenerate into static, while the signal is re-acquired if the vehicle moves only a fraction of a meter. The loss of the broadcast is caused by the vehicle stopping at a point where the signal experienced severe destructive interference. Cellular phones can also exhibit similar momentary fades.
Fading channel models are often used to model the effects of electromagnetic transmission of information over the air in cellular networks and broadcast communication. Fading channel models are also used in underwater acoustic communications to model the distortion caused by the water.
The terms slow and fast fading refer to the rate at which the magnitude and phase change imposed by the channel on the signal changes. The coherence time is a measure of the minimum time required for the magnitude change or phase change of the channel to become uncorrelated from its previous value.
In a fast-fading channel, the transmitter may take advantage of the variations in the channel conditions using time diversity to help increase robustness of the communication to a temporary deep fade. Although a deep fade may temporarily erase some of the information transmitted, use of an error-correcting code coupled with successfully transmitted bits during other time instances (interleaving) can allow for the erased bits to be recovered. In a slow-fading channel, it is not possible to use time diversity because the transmitter sees only a single realization of the channel within its delay constraint. A deep fade therefore lasts the entire duration of transmission and cannot be mitigated using coding.
The coherence time of the channel is related to a quantity known as the Doppler spread of the channel. When a user (or reflectors in its environment) is moving, the user's velocity causes a shift in the frequency of the signal transmitted along each signal path. This phenomenon is known as the Doppler shift. Signals traveling along different paths can have different Doppler shifts, corresponding to different rates of change in phase. The difference in Doppler shifts between different signal components contributing to a signal fading channel tap is known as the Doppler spread. Channels with a large Doppler spread have signal components that are each changing independently in phase over time. Since fading depends on whether signal components add constructively or destructively, such channels have a very short coherence time.
In general, coherence time is inversely related to Doppler spread, typically expressed as
where is the coherence time, is the Doppler spread. This equation is just an approximation, [2] to be exact, see Coherence time.
Block fading is where the fading process is approximately constant for a number of symbol intervals. [3] A channel can be 'doubly block-fading' when it is block fading in both the time and frequency domains. [4] Many wireless communications channels are dynamic by nature, and are commonly modeled as block fading. In these channels each block of symbol goes through a statistically independent transformation. Typically the slowly-varying channels based on jakes model of Rayleigh spectrum [5] is used for block fading in an OFDM system.
Selective fading or frequency selective fading is a radio propagation anomaly caused by partial cancellation of a radio signal by itself — the signal arrives at the receiver by two different paths, and at least one of the paths is changing (lengthening or shortening). This typically happens in the early evening or early morning as the various layers in the ionosphere move, separate, and combine. The two paths can both be skywave or one be groundwave.
Selective fading manifests as a slow, cyclic disturbance; the cancellation effect, or "null", is deepest at one particular frequency, which changes constantly, sweeping through the received audio.
As the carrier frequency of a signal is varied, the magnitude of the change in amplitude will vary. The coherence bandwidth measures the separation in frequency after which two signals will experience uncorrelated fading.
Since different frequency components of the signal are affected independently, it is highly unlikely that all parts of the signal will be simultaneously affected by a deep fade. Certain modulation schemes such as orthogonal frequency-division multiplexing (OFDM) and code-division multiple access (CDMA) are well-suited to employing frequency diversity to provide robustness to fading. OFDM divides the wideband signal into many slowly modulated narrowband subcarriers, each exposed to flat fading rather than frequency selective fading. This can be combated by means of error coding, simple equalization or adaptive bit loading. Inter-symbol interference is avoided by introducing a guard interval between the symbols called a cyclic prefix. CDMA uses the rake receiver to deal with each echo separately.
Frequency-selective fading channels are also dispersive, in that the signal energy associated with each symbol is spread out in time. This causes transmitted symbols that are adjacent in time to interfere with each other. Equalizers are often deployed in such channels to compensate for the effects of the intersymbol interference.
The echoes may also be exposed to Doppler shift, resulting in a time varying channel model.
The effect can be counteracted by applying some diversity scheme, for example OFDM (with subcarrier interleaving and forward error correction), or by using two receivers with separate antennas spaced a quarter-wavelength apart, or a specially designed diversity receiver with two antennas. Such a receiver continuously compares the signals arriving at the two antennas and presents the better signal.
Upfade is a special case of fading, used to describe constructive interference, in situations where a radio signal gains strength. [6] Some multipath conditions cause a signal's amplitude to be increased in this way because signals travelling by different paths arrive at the receiver in phase and become additive to the main signal. Hence, the total signal that reaches the receiver will be stronger than the signal would otherwise have been without the multipath conditions. The effect is also noticeable in wireless LAN systems. [7]
Examples of fading models for the distribution of the attenuation are:
Fading can cause poor performance in a communication system because it can result in a loss of signal power without reducing the power of the noise. This signal loss can be over some or all of the signal bandwidth. Fading can also be a problem as it changes over time: communication systems are often designed to adapt to such impairments, but the fading can change faster than the adaptations can be made. In such cases, the probability of experiencing a fade (and associated bit errors as the signal-to-noise ratio drops) on the channel becomes the limiting factor in the link's performance.
The effects of fading can be combated by using diversity to transmit the signal over multiple channels that experience independent fading and coherently combining them at the receiver. The probability of experiencing a fade in this composite channel is then proportional to the probability that all the component channels simultaneously experience a fade, a much more unlikely event.
Diversity can be achieved in time, frequency, or space. Common techniques used to overcome signal fading include:
Besides diversity, techniques such as application of cyclic prefix (e.g. in OFDM) and channel estimation and equalization can also be used to tackle fading.
Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies. CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies. To permit this without undue interference between the users, CDMA employs spread spectrum technology and a special coding scheme.
In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.
In telecommunication, intersymbol interference (ISI) is a form of distortion of a signal in which one symbol interferes with subsequent symbols. This is an unwanted phenomenon as the previous symbols have a similar effect as noise, thus making the communication less reliable. The spreading of the pulse beyond its allotted time interval causes it to interfere with neighboring pulses. ISI is usually caused by multipath propagation or the inherent linear or non-linear frequency response of a communication channel causing successive symbols to blur together.
In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately. For this reason, this effect is also known as multipath interference or multipath distortion.
Rayleigh fading is a statistical model for the effect of a propagation environment on a radio signal, such as that used by wireless devices.
A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.
Pulse-position modulation (PPM) is a form of signal modulation in which M message bits are encoded by transmitting a single pulse in one of possible required time shifts. This is repeated every T seconds, such that the transmitted bit rate is bits per second. It is primarily useful for optical communications systems, which tend to have little or no multipath interference.
A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.
Multiple frequency-shift keying (MFSK) is a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms. M, the size of the alphabet, is usually a power of two so that each symbol represents log2 M bits.
Antenna diversity, also known as space diversity or spatial diversity, is any one of several wireless diversity schemes that uses two or more antennas to improve the quality and reliability of a wireless link. Often, especially in urban and indoor environments, there is no clear line-of-sight (LOS) between transmitter and receiver. Instead the signal is reflected along multiple paths before finally being received. Each of these bounces can introduce phase shifts, time delays, attenuations, and distortions that can destructively interfere with one another at the aperture of the receiving antenna.
Multi-carrier code-division multiple access (MC-CDMA) is a multiple access scheme used in OFDM-based telecommunication systems, allowing the system to support multiple users at the same time over same frequency band.
In telecommunications, a diversity scheme refers to a method for improving the reliability of a message signal by using two or more communication channels with different characteristics. Diversity is mainly used in radio communication and is a common technique for combatting fading and co-channel interference and avoiding error bursts. It is based on the fact that individual channels experience fades and interference at different, random times, i.e., they are at least partly independent. Multiple versions of the same signal may be transmitted and/or received and combined in the receiver. Alternatively, a redundant forward error correction code may be added and different parts of the message transmitted over different channels. Diversity techniques may exploit the multipath propagation, resulting in a diversity gain, often measured in decibels.
Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.
Carrier Interferometry(CI) is a spread spectrum scheme designed to be used in an Orthogonal Frequency-Division Multiplexing (OFDM) communication system for multiplexing and multiple access, enabling the system to support multiple users at the same time over the same frequency band.
In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.
Underwater acoustic communication is a technique of sending and receiving messages in water. There are several ways of employing such communication but the most common is by using hydrophones. Underwater communication is difficult due to factors such as multi-path propagation, time variations of the channel, small available bandwidth and strong signal attenuation, especially over long ranges. Compared to terrestrial communication, underwater communication has low data rates because it uses acoustic waves instead of electromagnetic waves.
This is an index to articles about terms used in discussion of radio propagation.
Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.
Channel sounding is a technique that evaluates a radio environment for wireless communication, especially MIMO systems. Because of the effect of terrain and obstacles, wireless signals propagate in multiple paths. To minimize or use the multipath effect, engineers use channel sounding to process the multidimensional spatial–temporal signal and estimate channel characteristics. This helps simulate and design wireless systems.
Orthogonal Time Frequency Space (OTFS) is a 2D modulation technique that transforms the information carried in the Delay-Doppler coordinate system. The information is transformed in the similar time-frequency domain as utilized by the traditional schemes of modulation such as TDMA, CDMA, and OFDM. It was first used for fixed wireless, and is now a contending waveform for 6G technology due to its robustness in high-speed vehicular scenarios.