In radio propagation, two-wave with diffuse power (TWDP) fading is a model that explains why a signal strengthens or weakens at certain locations or times. TWDP models fading due to the interference of two strong radio signals and numerous smaller, diffuse signals.
TWDP is a generalized system using a statistical model to produce results. Other statistical methods for predicting fading, including Rayleigh fading and Rician fading, can be considered as special cases of the TWDP model. The TWDP calculation produces a number of fading cases that the older models do not, especially in areas with crowded radio spectrum.
Fading is an effect that occurs in many radio-related contexts. It occurs when a signal can take more than one path to a receiver, and the signals are effected differently along the two paths. The simplest case is when one path is longer than the other, but other delays and effects can cause similar results. In those cases, when the two (or more) signals are received at a single point, they may be out of phase, and thus potentially suffer from interference effects. If this occurs, the total signal received can be increased or decreased, but the effect is most noticeable when it makes the signal completely unreceivable, a deep fade. [1]
The effect had been noticed from the start of radio experimentation, but was especially notable with the introduction of shortwave communications. It was identified as being due to self-interference due to multiple paths between the transmitter and receiver, which in turn led to the discovery and characterization of the ionosphere. This layer of the atmosphere is reflective, causing the signal to return to the Earth where it can reflect back into the sky, and in this way "skip" for long distances over the ground. This provided multiple paths to the receiver, with (for instance) a strong signal received after one reflection off the ionosphere and a weaker one after two reflections. The seemingly random fading effects were traced to the slow movement of billows in the ionosphere and the daily variation due to the effects of sunlight. [2]
Attempts to model the effects of fading started almost immediately after the effect was first characterized. Earlier models included simplifications in order to make the math tractable.
Rayleigh fading is named for its use of the Rayleigh distribution of the signal. This is, in effect, the 2D distribution that results from the product of X and Y components that are separately and randomly distributed according to a normal distribution. By varying the parameters of the distributions, one can model different real-world cases. This model is useful when both of the signals are roughly equal in amplitude, as is the case when there is no direct line-of-sight between the transmitter and receiver. Rician fading is similar but uses the Rice distribution instead of Rayleigh, which is characterized by two parameters, shape and scale. This system is most useful when one of the paths is stronger, especially in line-of-sight applications.
A more general solution was long sought that did not require arbitrary limits on the distributions or envelopes. [3] [4] The first general solution was presented in 2002 by Durgin, Rappaport, and de Wolf. [5] The new method used the KΔ parameter to characterize the distribution.
The new system predicts a number of deep fading scenarios that are not found in the older methods, notably Rayleigh. Jeff Frolik was the first to measure TWDP fading in an aircraft fuselage, coining the term hyper-Rayleigh to denote this and other fading scenarios that result in worse-than-Rayleigh received power outages for a radio link. [6] Subsequently, other researchers have developed alternate, improved expressions for the TWDP distribution and its statistics. [7] [8] Recently, TWDP fading has been discovered for directional and vehicular millimeter wave channels. [9] [10]
The formulation of TWDP fading has upended classical RF design by providing a new "worst case design" scenario in fading in wireless links. Thus, common performance metrics in mobile communications such as bit error rate, [11] outage probability, [12] diversity gains, [13] etc. can be significantly degraded by TWDP fading. Both measurements and theoretical predictions have shown that TWDP fading becomes more common as mobile radio links increase in both frequency and density.
TWDP fading arises in a radio channel characterized by two constant-amplitude waves and numerous, smaller radio waves that are randomly phased with respect to one another. A TWDP-distributed envelope R follows from the following combination of elementary random variables:
where and are independent uniform random variables over the interval [0,1); and are independent, zero-mean Gaussian random variables with standard deviation . The two constant amplitude components are referred to as the specular components of the fading model. The term is referred to as the diffused component and represents the sum of numerous amplitudes and phases of smaller waves, which by the law of large numbers follows a complex Gaussian distribution.
TWDP fading PDF is characterized by three physically intuitive parameters:
average power: | |
specular-to-diffuse power ratio: | |
specular peak-to-average power ratio: |
In the limit of these parameters, TWDP reduces to the well known Rayleigh and Rician fading models. Specifically, notice that may vary from 0 to . At , TWDP model has no specular wave present and reduces to the Rayleigh fading model. At , the model corresponds to the type of two-wave envelope fading experienced on a transmission line with reflections. Similarly, may vary from 0 to 1. At , at most one specular wave is present and TDWP reduces to the Rician fading model. At , TDWP model contains two specular components of equal amplitude, .
Unlike its special cases of Rayleigh and Rician fading, there is no simple, closed-form solution for the probability density function (PDF) of received envelope for TWDP fading. Instead, the exact PDF is the result of the following definite integral: [14]
Numerous techniques have been proposed to approximate the TWDP PDF in closed form or evaluate its statistics directly. [5] [7] [8]
In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission and a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.
In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately. For this reason, this effect is also known as multipath interference or multipath distortion.
Path loss, or path attenuation, is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. Path loss is a major component in the analysis and design of the link budget of a telecommunication system.
Rayleigh fading is a statistical model for the effect of a propagation environment on a radio signal, such as that used by wireless devices.
In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is a communication channel that experiences fading. In wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading, weather, or shadowing from obstacles affecting the wave propagation, sometimes referred to as shadow fading.
Rician fading or Ricean fading is a stochastic model for radio propagation anomaly caused by partial cancellation of a radio signal by itself — the signal arrives at the receiver by several different paths, and at least one of the paths is changing. Rician fading occurs when one of the paths, typically a line of sight signal or some strong reflection signals, is much stronger than the others. In Rician fading, the amplitude gain is characterized by a Rician distribution.
In probability theory, the Rice distribution or Rician distribution is the probability distribution of the magnitude of a circularly-symmetric bivariate normal random variable, possibly with non-zero mean (noncentral). It was named after Stephen O. Rice (1907–1986).
In wireless communications, channel state information (CSI) is the known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The method is called Channel estimation. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multiantenna systems.
The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over distance.
In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
In radio, multiple-input and multiple-output, or MIMO, is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.
Free convolution is the free probability analog of the classical notion of convolution of probability measures. Due to the non-commutative nature of free probability theory, one has to talk separately about additive and multiplicative free convolution, which arise from addition and multiplication of free random variables. These operations have some interpretations in terms of empirical spectral measures of random matrices.
In probability and statistics, the generalized K-distribution is a three-parameter family of continuous probability distributions. The distribution arises by compounding two gamma distributions. In each case, a re-parametrization of the usual form of the family of gamma distributions is used, such that the parameters are:
The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.
In mathematics and telecommunications, stochastic geometry models of wireless networks refer to mathematical models based on stochastic geometry that are designed to represent aspects of wireless networks. The related research consists of analyzing these models with the aim of better understanding wireless communication networks in order to predict and control various network performance metrics. The models require using techniques from stochastic geometry and related fields including point processes, spatial statistics, geometric probability, percolation theory, as well as methods from more general mathematical disciplines such as geometry, probability theory, stochastic processes, queueing theory, information theory, and Fourier analysis.
In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR) is a quantity used to give theoretical upper bounds on channel capacity in wireless communication systems such as networks. Analogous to the signal-to-noise ratio (SNR) used often in wired communications systems, the SINR is defined as the power of a certain signal of interest divided by the sum of the interference power and the power of some background noise. If the power of noise term is zero, then the SINR reduces to the signal-to-interference ratio (SIR). Conversely, zero interference reduces the SINR to the SNR, which is used less often when developing mathematical models of wireless networks such as cellular networks.
The discrete-stable distributions are a class of probability distributions with the property that the sum of several random variables from such a distribution is distributed according to the same family. They are the discrete analogue of the continuous-stable distributions.
Non-orthogonal frequency-division multiplexing (N-OFDM) is a method of encoding digital data on multiple carrier frequencies with non-orthogonal intervals between frequency of sub-carriers. N-OFDM signals can be used in communication and radar systems.
The complex inverse Wishart distribution is a matrix probability distribution defined on complex-valued positive-definite matrices and is the complex analog of the real inverse Wishart distribution. The complex Wishart distribution was extensively investigated by Goodman while the derivation of the inverse is shown by Shaman and others. It has greatest application in least squares optimization theory applied to complex valued data samples in digital radio communications systems, often related to Fourier Domain complex filtering.
A copula is a mathematical function that provides a relationship between marginal distributions of random variables and their joint distributions. Copulas are important because it represents a dependence structure without using marginal distributions. Copulas have been widely used in the field of finance, but their use in signal processing is relatively new. Copulas have been employed in the field of wireless communication for classifying radar signals, change detection in remote sensing applications, and EEG signal processing in medicine. In this article, a short introduction to copulas is presented, followed by a mathematical derivation to obtain copula density functions, and then a section with a list of copula density functions with applications in signal processing.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)