Log-distance path loss model

Last updated

The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over long distance. While the log-distance model is suitable for longer distances, the short-distance path loss model is often used for indoor environments or very short outdoor distances. It's simpler and assumes a more direct line-of-sight propagation.

Contents

Mathematical formulation

Model

Log-distance path loss model Slow fading Log-distance.png
Log-distance path loss model

Log-distance path loss model is formally expressed as:

where

Corresponding non-logarithmic model

This corresponds to the following non-logarithmic gain model:

where is the average multiplicative gain at the reference distance from the transmitter. This gain depends on factors such as carrier frequency, antenna heights and antenna gain, for example due to directional antennas; and is a stochastic process that reflects flat fading. In case of only slow fading (shadowing), it may have log-normal distribution with parameter dB. In case of only fast fading due to multipath propagation, its amplitude may have Rayleigh distribution or Ricean distribution. This can be convenient, because power is proportional to the square of amplitude. Squaring a Rayleigh-distributed random variable produces an exponentially distributed random variable. In many cases, exponential distributions are computationally convenient and allow direct closed-form calculations in many more situations than a Rayleigh (or even a Gaussian).

Empirical coefficient values for indoor propagation

Empirical measurements of coefficients and in dB have shown the following values for a number of indoor wave propagation cases. [3]

Building typeFrequency of transmission [dB]
Vacuum, infinite space2.00
Retail store914 MHz2.28.7
Grocery store914 MHz1.85.2
Office with hard partition1.5 GHz3.07
Office with soft partition900 MHz2.49.6
Office with soft partition1.9 GHz2.614.1
Textile or chemical1.3 GHz2.03.0
Textile or chemical4 GHz2.17.0, 9.7
Office60 GHz2.23.92
Commercial60 GHz1.77.9

See also

Related Research Articles

<span class="mw-page-title-main">Holomorphic function</span> Complex-differentiable (mathematical) function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series. Holomorphic functions are the central objects of study in complex analysis.

Path loss, or path attenuation, is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. Path loss is a major component in the analysis and design of the link budget of a telecommunication system.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

Rayleigh fading is a statistical model for the effect of a propagation environment on a radio signal, such as that used by wireless devices.

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Rayleigh distribution</span> Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh.

In telecommunications, particularly in radio frequency engineering, signal strength refers to the transmitter power output as received by a reference antenna at a distance from the transmitting antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m). For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt (dBm). In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ.

<span class="mw-page-title-main">Rice distribution</span> Probability distribution

In probability theory, the Rice distribution or Rician distribution is the probability distribution of the magnitude of a circularly-symmetric bivariate normal random variable, possibly with non-zero mean (noncentral). It was named after Stephen O. Rice (1907–1986).

<span class="mw-page-title-main">Chi distribution</span> Probability distribution

In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.

A link budget is an accounting of all of the power gains and losses that a communication signal experiences in a telecommunication system; from a transmitter, through a communication medium such as radio waves, cable, waveguide, or optical fiber, to the receiver. It is an equation giving the received power from the transmitter power, after the attenuation of the transmitted signal due to propagation, as well as the antenna gains and feedline and other losses, and amplification of the signal in the receiver or any repeaters it passes through. A link budget is a design aid, calculated during the design of a communication system to determine the received power, to ensure that the information is received intelligibly with an adequate signal-to-noise ratio. Randomly varying channel gains such as fading are taken into account by adding some margin depending on the anticipated severity of its effects. The amount of margin required can be reduced by the use of mitigating techniques such as antenna diversity or multiple-input and multiple-output (MIMO).

The Lee model for area-to-area mode is a radio propagation model that operates around 900 MHz. Built as two different modes, this model includes an adjustment factor that can be adjusted to make the model more flexible to different regions of propagation.

The Lee model for point-to-point mode is a radio propagation model that operates around 900 MHz. Built as two different modes, this model includes an adjustment factor that can be adjusted to make the model more flexible to different regions of propagation.

<span class="mw-page-title-main">Nakagami distribution</span> Statistical distribution

The Nakagami distribution or the Nakagami-m distribution is a probability distribution related to the gamma distribution. It is used to model physical phenomena, such as those found in medical ultrasound imaging, communications engineering, meteorology, hydrology, multimedia, and seismology.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Two-ray ground-reflection model</span> Multipath radio propagation model

The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.

In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR) is a quantity used to give theoretical upper bounds on channel capacity in wireless communication systems such as networks. Analogous to the signal-to-noise ratio (SNR) used often in wired communications systems, the SINR is defined as the power of a certain signal of interest divided by the sum of the interference power and the power of some background noise. If the power of noise term is zero, then the SINR reduces to the signal-to-interference ratio (SIR). Conversely, zero interference reduces the SINR to the SNR, which is used less often when developing mathematical models of wireless networks such as cellular networks.

<span class="mw-page-title-main">Ten-rays model</span> Mathematical model

The ten-rays model is a mathematical model applied to the transmissions of radio signal in an urban area,

<span class="mw-page-title-main">Air to ground channel</span> Communication link between airborne and terrestrial devices

In the domain of wireless communication, air-to-ground channels (A2G) are used for linking airborne devices, such as drones and aircraft, with terrestrial communication equipment. These channels are instrumental in a wide array of applications, extending beyond commercial telecommunications — including important roles in 5G and forthcoming 6G networks, where aerial base stations are integral to Non-Terrestrial Networks — to encompass critical uses in emergency response, environmental monitoring, military communications, and the expanding domain of the internet of things (IoT). A comprehensive understanding of A2G channels, their operational mechanics, and distinct attributes is essential for the enhancement of wireless network performance.

References

  1. 1 2 "Log Distance Path Loss or Log Normal Shadowing Model". 30 September 2013.
  2. Julius Goldhirsh; Wolfhard J. Vogel. "11.4". Handbook of Propagation Effects for Vehicular and Personal Mobile Satellite Systems (PDF).
  3. Wireless communications principles and practices, T. S. Rappaport, 2002, Prentice-Hall

Further reading