Free-space path loss

Last updated

In telecommunication, the free-space path loss (FSPL) (also known as free-space loss, FSL) is the attenuation of radio energy between the feedpoints of two antennas that results from the combination of the receiving antenna's capture area plus the obstacle-free, line-of-sight (LoS) path through free space (usually air). [1] The "Standard Definitions of Terms for Antennas", IEEE Std 145-1993, defines free-space loss as "The loss between two isotropic radiators in free space, expressed as a power ratio." [2] It does not include any power loss in the antennas themselves due to imperfections such as resistance. Free-space loss increases with the square of distance between the antennas because the radio waves spread out by the inverse square law and decreases with the square of the wavelength of the radio waves. The FSPL is rarely used standalone, but rather as a part of the Friis transmission formula, which includes the gain of antennas. [3] It is a factor that must be included in the power link budget of a radio communication system, to ensure that sufficient radio power reaches the receiver such that the transmitted signal is received intelligibly.

Contents

Free-space path loss formula

The free-space path loss (FSPL) formula derives from the Friis transmission formula. [3] This states that in a radio system consisting of a transmitting antenna transmitting radio waves to a receiving antenna, the ratio of radio wave power received to the power transmitted is:

where

The distance between the antennas must be large enough that the antennas are in the far field of each other . [4] The free-space path loss is the loss factor in this equation that is due to distance and wavelength, or in other words, the ratio of power transmitted to power received assuming the antennas are isotropic and have no directivity (): [5]

Since the frequency of a radio wave is equal to the speed of light divided by the wavelength, the path loss can also be written in terms of frequency:

Beside the assumption that the antennas are lossless, this formula assumes that the polarization of the antennas is the same, that there are no multipath effects, and that the radio wave path is sufficiently far away from obstructions that it acts as if it is in free space. This last restriction requires an ellipsoidal area around the line of sight out to 0.6 of the Fresnel zone be clear of obstructions. The Fresnel zone increases in diameter with the wavelength of the radio waves. Often the concept of free space path loss is applied to radio systems that don't completely meet these requirements, but these imperfections can be accounted for by small constant power loss factors that can be included in the link budget.

Influence of distance and frequency

In free space the intensity of electromagnetic radiation decreases with distance by the inverse square law, because the same amount of power spreads over an area proportional to the square of distance from the source. Inverse square law.svg
In free space the intensity of electromagnetic radiation decreases with distance by the inverse square law, because the same amount of power spreads over an area proportional to the square of distance from the source.

The free-space loss increases with the distance between the antennas and decreases with the wavelength of the radio waves due to these factors: [6]

Derivation

The radio waves from the transmitting antenna spread out in a spherical wavefront. The amount of power passing through any sphere centered on the transmitting antenna is equal. The surface area of a sphere of radius is . Thus the intensity or power density of the radiation in any particular direction from the antenna is inversely proportional to the square of distance

(The term means the surface of a sphere, which has a radius . Please remember, that here has a meaning of 'distance' between the two antennas, and does not mean the diameter of the sphere (as notation usually used in mathematics).) For an isotropic antenna which radiates equal power in all directions, the power density is evenly distributed over the surface of a sphere centered on the antenna

The amount of power the receiving antenna receives from this radiation field is

The factor , called the effective area or aperture of the receiving antenna, which has the units of area, can be thought of as the amount of area perpendicular to the direction of the radio waves from which the receiving antenna captures energy. Since the linear dimensions of an antenna scale with the wavelength , the cross sectional area of an antenna and thus the aperture scales with the square of wavelength . [6] The effective area of an isotropic antenna (for a derivation of this see antenna aperture article) is

Combining the above (1) and (2), for isotropic antennas

Free-space path loss in decibels

A convenient way to express FSPL is in terms of decibels (dB): [8]

using SI units of meters for , hertz (s−1) for , and meters per second (m⋅s−1) for , (where c=299 792 458 m/s in vacuum, ≈ 300 000 km/s)

For typical radio applications, it is common to find measured in kilometers and in gigahertz, in which case the FSPL equation becomes

an increase of 240 dB, because the units increase by factors of 103 and 109 respectively, so:

(The constants differ in the second decimal digit when the speed of light is approximated by 300 000 km/s. Whether one uses 92.4, 92.44 or 92.45 dB, the result will be OK as the average measurement instruments cannot provide more accurate results anyway. A logarithmic scale is introduced to see the important differences (i.e. order of magnitudes), so in engineering practice dB results are rounded)

See also

Related Research Articles

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

Path loss, or path attenuation, is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. Path loss is a major component in the analysis and design of the link budget of a telecommunication system.

<span class="mw-page-title-main">Radiation pattern</span> Directional variation in strength of radio waves

In the field of antenna design the term radiation pattern refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

<span class="mw-page-title-main">Gain (antenna)</span> Telecommunications performance metric

In electromagnetics, an antenna's gain is a key performance parameter which combines the antenna's directivity and radiation efficiency. The term power gain has been deprecated by IEEE. In a transmitting antenna, the gain describes how well the antenna converts input power into radio waves headed in a specified direction. In a receiving antenna, the gain describes how well the antenna converts radio waves arriving from a specified direction into electrical power. When no direction is specified, gain is understood to refer to the peak value of the gain, the gain in the direction of the antenna's main lobe. A plot of the gain as a function of direction is called the antenna pattern or radiation pattern. It is not to be confused with directivity, which does not take an antenna's radiation efficiency into account.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

Radiation resistance is that part of an antenna's feedpoint electrical resistance caused by the emission of radio waves from the antenna. In radio transmission, a radio transmitter is connected to an antenna. The transmitter generates a radio frequency alternating current which is applied to the antenna, and the antenna radiates the energy in the alternating current as radio waves. Because the antenna is absorbing the energy it is radiating from the transmitter, the antenna's input terminals present a resistance to the current from the transmitter.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod shaped conductors

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

In telecommunications, particularly in radio frequency engineering, signal strength refers to the transmitter power output as received by a reference antenna at a distance from the transmitting antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m). For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt (dBm). In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ.

In electromagnetics and antenna theory, the aperture of an antenna is defined as "A surface, near or on an antenna, on which it is convenient to make assumptions regarding the field values for the purpose of computing fields at external points. The aperture is often taken as that portion of a plane surface near the antenna, perpendicular to the direction of maximum radiation, through which the major part of the radiation passes."

The Friis transmission formula is used in telecommunications engineering, equating the power at the terminals of a receive antenna as the product of power density of the incident wave and the effective aperture of the receiving antenna under idealized conditions given another antenna some distance away transmitting a known amount of power. The formula was presented first by Danish-American radio engineer Harald T. Friis in 1946. The formula is sometimes referenced as the Friis transmission equation.

<span class="mw-page-title-main">Isotropic radiator</span>

An isotropic radiator is a theoretical point source of electromagnetic or sound waves which radiates the same intensity of radiation in all directions. It has no preferred direction of radiation. It radiates uniformly in all directions over a sphere centred on the source. Isotropic radiators are used as reference radiators with which other sources are compared, for example in determining the gain of antennas. A coherent isotropic radiator of electromagnetic waves is theoretically impossible, but incoherent radiators can be built. An isotropic sound radiator is possible because sound is a longitudinal wave.

Antenna measurement techniques refers to the testing of antennas to ensure that the antenna meets specifications or simply to characterize it. Typical parameters of antennas are gain, bandwidth, radiation pattern, beamwidth, polarization, and impedance.

<span class="mw-page-title-main">Directivity</span> Measure of how much of an antennas signal is transmitted in one direction

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator is 1, or 0 dBi.

Ruze's equation is an equation relating the gain of an antenna to the root mean square (RMS) of the antenna's random surface errors. The equation was originally developed for parabolic reflector antennas, and later extended to phased arrays. The equation is named after John Ruze, who introduced the equation in a paper he wrote in 1952. The equation states that the antenna's gain is inversely proportional to the exponential of the square of the RMS surface errors. Mathematically, the equation for parabolic reflector antennas can be expressed as:

Downlink CNR is an important figure in system TVRO design. Below are certain parameters used in CNR computation.

<span class="mw-page-title-main">Two-ray ground-reflection model</span>

The two-rays ground-reflection model is a multipath radio propagation model which predicts the path losses between a transmitting antenna and a receiving antenna when they are in line of sight (LOS). Generally, the two antenna each have different height. The received signal having two components, the LOS component and the reflection component formed predominantly by a single ground reflected wave.

<span class="mw-page-title-main">Ten-rays model</span>

The ten-rays model is a mathematical model applied to the transmissions of radio signal in an urban area,

<span class="mw-page-title-main">Six-rays model</span>

The six-rays model is applied in an urban or indoor environment where a radio signal transmitted will encounter some objects that produce reflected, refracted or scattered copies of the transmitted signal. These are called multipath signal components, they are attenuated, delayed and shifted from the original signal (LOS) due to a finite number of reflectors with known location and dielectric properties, LOS and multipath signal are summed at the receiver.

<span class="mw-page-title-main">Air to ground channel</span>

In the domain of wireless communication, air-to-ground channels (A2G) are used for linking airborne devices, such as drones and aircraft, with terrestrial communication equipment. These channels are instrumental in a wide array of applications, extending beyond commercial telecommunications — including important roles in 5G and forthcoming 6G networks, where aerial base stations are integral to Non-Terrestrial Networks — to encompass critical uses in emergency response, environmental monitoring, military communications, and the expanding domain of the internet of things (IoT). A comprehensive understanding of A2G channels, their operational mechanics, and distinct attributes is essential for the enhancement of wireless network performance.

References

  1. 1 2 3 Islam, Syad Kamrul; Haider, Mohammad Rafiqul (10 December 2009). Sensors and Low Power Signal Processing (2010 ed.). Springer. p. 49. ISBN   978-0387793917.
  2. IEEE Std 145-1993(R2004), IEEE Standard Definitions of Terms for Antennas. New York, NY: The Institute of Electrical and Electronics Engineers, Inc. 1993. p. 14. ISBN   1-55937-317-2.
  3. 1 2 Friis, H.T. (May 1946). "A Note on a Simple Transmission Formula". IRE Proc. 34 (5): 254–256. doi:10.1109/JRPROC.1946.234568. S2CID   51630329.
  4. Johnson, Richard (1984). Antenna Engineering Handbook (2nd ed.). New York, NY: McGraw-Hill, Inc. pp. 1–12. ISBN   0-07-032291-0.
  5. Whitaker, Jerry C. (1996). The Electronics Handbook. CRC Press. p. 1321. ISBN   9780849383458.
  6. 1 2 Cerwin, Steve (2019). Radio Propagation and Antennas: A Non-Mathematical Treatment of Radio and Antennas. Author House. pp. 31–35. ISBN   9781728320328., Section 1.8
  7. Rappaport, Theodore S. (2010). Wireless communications: principles and practice (Second edition, twentieth impression 2019, Indian subcontinent adaption ed.). Noida: Pearson India Education Services. p. 107. ISBN   978-81-317-3186-4.
  8. "Free Space Path Loss Calculator". Pasternack. Retrieved October 16, 2021.

Further reading