Rain fade

Last updated

Rain fade refers primarily to the absorption of a microwave radio frequency (RF) signal by atmospheric rain, snow, or ice, and losses which are especially prevalent at frequencies above 11 GHz. It also refers to the degradation of a signal caused by the electromagnetic interference of the leading edge of a storm front. Rain fade can be caused by precipitation at the uplink or downlink location. It does not need to be raining at a location for it to be affected by rain fade, as the signal may pass through precipitation many miles away, especially if the satellite dish has a low look angle. From 5% to 20% of rain fade or satellite signal attenuation may also be caused by rain, snow, or ice on the uplink or downlink antenna reflector, radome, or feed horn. Rain fade is not limited to satellite uplinks or downlinks, as it can also affect terrestrial point-to-point microwave links (those on the Earth's surface).

Contents

Rain fade is usually estimated experimentally and also can be calculated theoretically using scattering theory of raindrops. Raindrop size distribution (DSD) is an important consideration for studying rain fade characteristics. [1] Various mathematical forms such as Gamma function, lognormal or exponential forms are usually used to model the DSD. Mie or Rayleigh scattering theory with point matching or t-matrix approach is used to calculate the scattering cross section, and specific rain attenuation. Since rain is a non-homogeneous process in both time and space, specific attenuation varies with location, time and rain type.

Total rain attenuation is also dependent upon the spatial structure of rain field. Horizontal, as well as vertical, extension of rain again varies for different rain type and location. Limit of the vertical rain region is usually assumed to coincide with 0˚ isotherm and called rain height. Melting layer height is also used as the limits of rain region and can be estimated from the bright band signature of radar reflectivity. [2] The horizontal rain structure is assumed to have a cellular form, called rain cell. Rain cell sizes can vary from a few hundred meters to several kilometers and dependent upon the rain type and location. Existence of very small size rain cells are recently observed in tropical rain. [3]

The rain attenuation on satellite communication can be predicted using rain attenuation prediction models which lead to a suitable selection of the Fade Mitigation Technique (FMT). [4] The rain attenuation prediction models require rainfall rate data which, in turn, can be obtained from in either the prediction rainfall maps, which may reflect inaccurate rain performance prediction, or by actual measured rainfall data that gives more accurate prediction and hence the appropriate selection of FMT. Substantially, the earth altitude above the sea level is an essential factor affecting the rain attenuation performance. [5] The satellite system designers and channel providers should account for the rain impairments at their channel setup.

Possible ways to overcome the effects of rain fade are site diversity, uplink power control, variable rate encoding, and receiving antennas larger than the requested size for normal weather conditions.

The simplest way to compensate the rain fade effect in satellite communications is to increase the transmission power: this dynamic fade countermeasure is called uplink power control (UPC). [6] Until more recently, uplink power control had limited use, since it required more powerful transmitters – ones that could normally run at lower levels and could be increased in power level on command (i.e. automatically). Also uplink power control could not provide very large signal margins without compressing the transmitting amplifier. [7] Modern amplifiers coupled with advanced uplink power control systems that offer automatic controls to prevent transponder saturation make uplink power control systems an effective, affordable and easy solution to rain fade in satellite signals. [8]

In terrestrial point to point microwave systems ranging from 11 GHz to 80 GHz, a parallel backup link can be installed alongside a rain fade prone higher bandwidth connection. [9] In this arrangement, a primary link such as an 80 GHz 1 Gbit/s full duplex microwave bridge may be calculated to have a 99.9% availability rate over the period of one year. [10] The calculated 99.9% availability rate means that the link may be down for a cumulative total of ten or more hours per year as the peaks of rain storms pass over the area. [10] A secondary lower bandwidth link such as a 5.8 GHz based 100 Mbit/s bridge may be installed parallel to the primary link, with routers on both ends controlling automatic failover to the 100 Mbit/s bridge when the primary 1 Gbit/s link is down due to rain fade. Using this arrangement, high frequency point to point links (23 GHz+) may be installed to service locations many kilometers farther than could be served with a single link requiring 99.99% uptime over the course of one year. [11]

CCIR interpolation formula

It is possible to extrapolate the cumulative attenuation distribution at a given location by using the CCIR interpolation formula: [12]

Ap = A001 0.12 p(0.546 0.0043 log10p).

where Ap is the attenuation in dB exceeded for a p percentage of the time and A001 is the attenuation exceeded for 0.01% of the time.

ITU-R frequency scaling formula

According to the ITU-R, [13] rain attenuation statistics can be scaled in frequency in the range 7 to 55 GHz by the formula

where

and f is the frequency in GHz.

See also

Related Research Articles

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz, or between 1 and 3000 GHz . The prefix micro- in microwave is not meant to suggest a wavelength in the micrometer range; rather, it indicates that microwaves are small, compared to the radio waves used in prior radio technology.

The Ku band is the portion of the electromagnetic spectrum in the microwave range of frequencies from 12 to 18 gigahertz (GHz). The symbol is short for "K-under", because it is the lower part of the original NATO K band, which was split into three bands because of the presence of the atmospheric water vapor resonance peak at 22.24 GHz, (1.35 cm) which made the center unusable for long range transmission. In radar applications, it ranges from 12 to 18 GHz according to the formal definition of radar frequency band nomenclature in IEEE Standard 521–2002.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

<span class="mw-page-title-main">Low-noise block downconverter</span> Receiving device on satellite dishes

A low-noise block downconverter (LNB) is the receiving device mounted on satellite dishes used for satellite TV reception, which collects the radio waves from the dish and converts them to a signal which is sent through a cable to the receiver inside the building. Also called a low-noise block, low-noise converter (LNC), or even low-noise downconverter (LND), the device is sometimes inaccurately called a low-noise amplifier (LNA).

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

<span class="mw-page-title-main">Amateur television</span> Transmission of video in amateur radio bands

Amateur television (ATV) is the transmission of broadcast quality video and audio over the wide range of frequencies of radio waves allocated for radio amateur (Ham) use. ATV is used for non-commercial experimentation, pleasure, and public service events. Ham TV stations were on the air in many cities before commercial television stations came on the air. Various transmission standards are used, these include the broadcast transmission standards of NTSC in North America and Japan, and PAL or SECAM elsewhere, utilizing the full refresh rates of those standards. ATV includes the study of building of such transmitters and receivers, and the study of radio propagation of signals travelling between transmitting and receiving stations.

The X band is the designation for a band of frequencies in the microwave radio region of the electromagnetic spectrum. In some cases, such as in communication engineering, the frequency range of the X band is rather indefinitely set at approximately 7.0–11.2 GHz. In radar engineering, the frequency range is specified by the Institute of Electrical and Electronics Engineers (IEEE) as 8.0–12.0 GHz. The X band is used for radar, satellite communication, and wireless computer networks.

Extremely high frequency is the International Telecommunication Union designation for the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). It lies between the super high frequency band and the far infrared band, the lower part of which is the terahertz band. Radio waves in this band have wavelengths from ten to one millimeter, so it is also called the millimeter band and radiation in this band is called millimeter waves, sometimes abbreviated MMW or mmWave. Millimeter-length electromagnetic waves were first investigated by Jagadish Chandra Bose, who generated waves of frequency up to 60 GHz during experiments in 1894–1896.

Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone.

<span class="mw-page-title-main">Microwave transmission</span> Transmission of information via microwaves

Microwave transmission is the transmission of information by electromagnetic waves with wavelengths in the microwave frequency range of 300 MHz to 300 GHz of the electromagnetic spectrum. Microwave signals are normally limited to the line of sight, so long-distance transmission using these signals requires a series of repeaters forming a microwave relay network. It is possible to use microwave signals in over-the-horizon communications using tropospheric scatter, but such systems are expensive and generally used only in specialist roles.

<span class="mw-page-title-main">Satellite television</span> Broadcasting of television using artificial satellites

Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.

The Longley–Rice model (LR) is a radio propagation model: a method for predicting the attenuation of radio signals for a telecommunication link in the frequency range of 40 MHz to 100 GHz.

<span class="mw-page-title-main">Satellite truck</span> Mobile communications satellite earth station

A Satellite Truck is a mobile communications satellite ground station mounted on a truck chassis as a platform. Employed in remote television broadcasts, satellite trucks transmit video signals back to studios or production facilities for editing and broadcasting. Satellite trucks usually travel with a production truck, which contains video cameras, sound equipment and a crew. A satellite truck has a large satellite dish antenna which is pointed at a communication satellite, which then relays the signal back down to the studio. Satellite communication allows transmission from any location that the production truck can reach, provided a line of sight to the desired satellite is available.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver, this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

The Intelsat VI series of satellites were the 8th generation of geostationary communications satellites for the Intelsat Corporation. Designed and built by Hughes Aircraft Company (HAC) in 1983-1991, there were five VI-series satellites built: 601, 602, 603, 604, and 605.

<span class="mw-page-title-main">Unified S-band</span> Tracking and communication system developed by NASA and JPL

The Unified S-band (USB) system is a tracking and communication system developed for the Apollo program by NASA and the Jet Propulsion Laboratory (JPL). It operated in the S band portion of the microwave spectrum, unifying voice communications, television, telemetry, command, tracking and ranging into a single system to save size and weight and simplify operations. The USB ground network was managed by the Goddard Space Flight Center (GSFC). Commercial contractors included Collins Radio, Blaw-Knox, Motorola and Energy Systems.

<span class="mw-page-title-main">C band (IEEE)</span> Range of radio frequencies from 4 to 8 GHz

The C band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a portion of the electromagnetic spectrum in the microwave range of frequencies ranging from 4.0 to 8.0 gigahertz (GHz). However, the U.S. Federal Communications Commission C band proceeding and auction, designated 3.7–4.2 GHz as C band. The C band is used for many satellite communications transmissions, some cordless telephones, as well as some radar and weather radar systems. A very large use is the high frequency band of Wi-Fi wireless computer networks.

The IEEE K-band is a portion of the radio spectrum in the microwave range of frequencies from 18 to 27 gigahertz (GHz). The range of frequencies in the center of the K-band between 18 and 26.5 GHz are absorbed by water vapor in the atmosphere due to its resonance peak at 22.24 GHz, 1.35 cm (0.53 in). Therefore these frequencies experience high atmospheric attenuation and cannot be used for long-distance applications. For this reason, the original K-band has been split into three bands: Ka-band, K-band, and Ku-band as detailed below.

In communications satellite systems, rain attenuation frequency scaling is a technique implemented to model rain fade phenomena affecting a telecommunications link, both statistically and instantaneously. Accurate predictions of rain attenuation are crucial both for the proper design of a satellite communication (SatCom) system, as the detrimental impact of hydrometeors present within the troposphere, mainly rain, on radio frequency signals, can lead to system failures. Moreover, such analyses are essential for the implementation of adaptive fade mitigation techniques, such as uplink power control and variable rate encoding schemes, to increase the link availability.

References

  1. Das, Saurabh; Maitra, Animesh; Shukla, Ashish K. (2010). "PIER B Online - Rain Attenuation Modeling in the 10-100 GHz Frequency Using Drop Size Distributions for Different Climatic Zones in Tropical India". Progress in Electromagnetics Research B. 25: 211–224. doi: 10.2528/PIERB10072707 .
  2. Das, Saurabh; Maitra, Animesh; Shukla, Ashish K. (2011-07-01). "Melting layer characteristics at different climatic conditions in the Indian region: Ground based measurements and satellite observations". Atmospheric Research. 101 (1–2): 78–83. Bibcode:2011AtmRe.101...78D. doi:10.1016/j.atmosres.2011.01.013.
  3. Shukla, Ashish K.; Roy, Bijoy; Das, Saurabh; Charania, A. R.; Kavaiya, K. S.; Bandyopadhyay, Kalyan; Dasgupta, K. S. (2010-02-01). "Micro rain cell measurements in tropical India for site diversity fade mitigation estimation". Radio Science. 45 (1): RS1002. Bibcode:2010RaSc...45.1002S. doi: 10.1029/2008RS004093 . ISSN   1944-799X.
  4. Al-Saegh, Ali M.; Elwi, Taha A.; Abdullah, Osama A.; Sali, Aduwati; Aljumaily, Abdulmajeed H. J. (2021). Rainfall Effect on Satellite Communications in Mosul at Frequencies above 10 GHz. pp. 318–322. doi:10.1109/IconSpace53224.2021.9768738. ISBN   978-1-6654-2523-0 . Retrieved 2024-01-31.
  5. Al-Saegh, Ali M.; Elwi, Taha A. (2020-05-01). "Direct extraction of rain-induced impairments on satellite communication channel in subtropical climate at K and Ka bands". Telecommunication Systems. 74 (1): 15–25. doi:10.1007/s11235-019-00631-2. ISSN   1572-9451. S2CID   255107907.
  6. "Rain Fade". everythingrf.com. May 1, 2021. Retrieved October 27, 2023.
  7. Samad, Md Abdus; Diba, Feyisa Debo; Choi, Dong-You (January 2021). "A Survey of Rain Fade Models for Earth–Space Telecommunication Links—Taxonomy, Methods, and Comparative Study". Remote Sensing. 13 (10): 1965. Bibcode:2021RemS...13.1965S. doi: 10.3390/rs13101965 . ISSN   2072-4292.
  8. "Uplink power control method and apparatus for satellite communications networks". www.esa.int. Retrieved 2023-10-27.
  9. "Diversity in Microwave Links". CableFree. Retrieved 2023-10-27.
  10. 1 2 "Microwave Link". Microwave Link. 2015-04-13. Retrieved 2023-10-27.
  11. "Point to Point Archives - Page 2 of 3". Microwave Link. 2017-11-28. Retrieved 2023-10-27.
  12. CCIR [1990] Report 564-4 "Propagation data and prediction methods required for earth-space telecommunication systems"
  13. “Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems,” Recommendations of the ITU-R, Rec. P.618-10, 2009.