Channel state information

Last updated

In wireless communications, channel state information (CSI) is the known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The method is called channel estimation. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multiantenna systems.

Contents

CSI needs to be estimated at the receiver and usually quantized and feedback to the transmitter (although reverse-link estimation is possible in time-division duplex (TDD) systems). Therefore, the transmitter and receiver can have different CSI. The CSI at the transmitter and the CSI at the receiver are sometimes referred to as CSIT and CSIR, respectively.

Different kinds of channel state information

There are basically two levels of CSI, namely instantaneous CSI and statistical CSI.

Instantaneous CSI (or short-term CSI) means that the current channel conditions are known, which can be viewed as knowing the impulse response of a digital filter. This gives an opportunity to adapt the transmitted signal to the impulse response and thereby optimize the received signal for spatial multiplexing or to achieve low bit error rates.

Statistical CSI (or long-term CSI) means that a statistical characterization of the channel is known. This description can include, for example, the type of fading distribution, the average channel gain, the line-of-sight component, and the spatial correlation. As with instantaneous CSI, this information can be used for transmission optimization.

The CSI acquisition is practically limited by how fast the channel conditions are changing. In fast fading systems where channel conditions vary rapidly under the transmission of a single information symbol, only statistical CSI is reasonable. On the other hand, in slow fading systems instantaneous CSI can be estimated with reasonable accuracy and used for transmission adaptation for some time before being outdated.

In practical systems, the available CSI often lies in between these two levels; instantaneous CSI with some estimation/quantization error is combined with statistical information.

Mathematical description

In a narrowband flat-fading channel with multiple transmit and receive antennas (MIMO), the system is modeled as [1]

where and are the receive and transmit vectors, respectively, and and are the channel matrix and the noise vector, respectively. The noise is often modeled as circular symmetric complex normal with

where the mean value is zero and the noise covariance matrix is known.

Instantaneous CSI

Ideally, the channel matrix is known perfectly. Due to channel estimation errors, the channel information can be represented as [2]

where is the channel estimate and is the estimation error covariance matrix. The vectorization was used to achieve the column stacking of , as multivariate random variables are usually defined as vectors.

Statistical CSI

In this case, the statistics of are known. In a Rayleigh fading channel, this corresponds to knowing that [3]

for some known channel covariance matrix .

Estimation of CSI

Since the channel conditions vary, instantaneous CSI needs to be estimated on a short-term basis. A popular approach is so-called training sequence (or pilot sequence), where a known signal is transmitted and the channel matrix is estimated using the combined knowledge of the transmitted and received signal.

Let the training sequence be denoted , where the vector is transmitted over the channel as

By combining the received training signals for , the total training signalling becomes

with the training matrix and the noise matrix .

With this notation, channel estimation means that should be recovered from the knowledge of and .

Least-square estimation

If the channel and noise distributions are unknown, then the least-square estimator (also known as the minimum-variance unbiased estimator) is [4]

where denotes the conjugate transpose. The estimation mean squared error (MSE) is proportional to

where denotes the trace. The error is minimized when is a scaled identity matrix. This can only be achieved when is equal to (or larger than) the number of transmit antennas. The simplest example of an optimal training matrix is to select as a (scaled) identity matrix of the same size that the number of transmit antennas.

MMSE estimation

If the channel and noise distributions are known, then this a priori information can be exploited to decrease the estimation error. This approach is known as Bayesian estimation and for Rayleigh fading channels it exploits that

The MMSE estimator is the Bayesian counterpart to the least-square estimator and becomes [2]

where denotes the Kronecker product and the identity matrix has the dimension of the number of receive antennas. The estimation MSE is

and is minimized by a training matrix that in general can only be derived through numerical optimization. But there exist heuristic solutions with good performance based on waterfilling. As opposed to least-square estimation, the estimation error for spatially correlated channels can be minimized even if is smaller than the number of transmit antennas. [2] Thus, MMSE estimation can both decrease the estimation error and shorten the required training sequence. It needs however additionally the knowledge of the channel correlation matrix and noise correlation matrix . In absence of an accurate knowledge of these correlation matrices, robust choices need to be made to avoid MSE degradation. [5] [6]

Neural network estimation

With the advances of deep learning there has been work [7] that shows that the channel state information can be estimated using Neural network such as 2D/3D CNN and obtain better performance with less pilot signals. The main idea is that the neural network can do a good interpolation in time and frequency.

Data-aided versus blind estimation

In a data-aided approach, the channel estimation is based on some known data, which is known both at the transmitter and at the receiver, such as training sequences or pilot data. [8] In a blind approach, the estimation is based only on the received data, without any known transmitted sequence. The tradeoff is the accuracy versus the overhead. A data-aided approach requires more bandwidth or it has a higher overhead than a blind approach, but it can achieve a better channel estimation accuracy than a blind estimator.

See also

Related Research Articles

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

<span class="mw-page-title-main">Kalman filter</span> Algorithm that estimates unknowns from a series of measurements over time

For statistics and control theory, Kalman filtering, also known as linear quadratic estimation, is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is constructed as a mean squared error minimiser, but an alternative derivation of the filter is also provided showing how the filter relates to maximum likelihood statistics. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory.

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product.

<span class="mw-page-title-main">Ordinary least squares</span> Method for estimating the unknown parameters in a linear regression model

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable. Some sources consider OLS to be linear regression.

In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model. GLS is employed to improve statistical efficiency and reduce the risk of drawing erroneous inferences, as compared to conventional least squares and weighted least squares methods. It was first described by Alexander Aitken in 1935.

<span class="mw-page-title-main">Space-time adaptive processing</span> Signal processing technique used in radar

Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem. Through careful application of STAP, it is possible to achieve order-of-magnitude sensitivity improvements in target detection.

In the field of wireless communication, macrodiversity is a kind of space diversity scheme using several receiver or transmitter antennas for transferring the same signal. The distance between the transmitters is much longer than the wavelength, as opposed to microdiversity where the distance is in the order of or shorter than the wavelength.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

The topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors, Eicker–Huber–White standard errors, to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.

In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

Wi-Fi positioning system is a geolocation system that uses the characteristics of nearby Wi‑Fi access points to discover where a device is located.

In wireless communication, spatial correlation is the correlation between a signal's spatial direction and the average received signal gain. Theoretically, the performance of wireless communication systems can be improved by having multiple antennas at the transmitter and the receiver. The idea is that if the propagation channels between each pair of transmit and receive antennas are statistically independent and identically distributed, then multiple independent channels with identical characteristics can be created by precoding and be used for either transmitting multiple data streams or increasing the reliability. In practice, the channels between different antennas are often correlated and therefore the potential multi antenna gains may not always be obtainable.

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes about an estimate of the current mean and covariance. In the case of well defined transition models, the EKF has been considered the de facto standard in the theory of nonlinear state estimation, navigation systems and GPS.

Zero-forcing precoding is a method of spatial signal processing by which a multiple antenna transmitter can null the multiuser interference in a multi-user MIMO wireless communication system. When the channel state information is perfectly known at the transmitter, the zero-forcing precoder is given by the pseudo-inverse of the channel matrix. Zero-forcing has been used in LTE mobile networks.

Kernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted. It was soon recognised that analogous estimators for multivariate data would be an important addition to multivariate statistics. Based on research carried out in the 1990s and 2000s, multivariate kernel density estimation has reached a level of maturity comparable to its univariate counterparts.

Per-user unitary rate control (PU2RC) is a multi-user MIMO (multiple-input and multiple-output) scheme. PU2RC uses both transmission pre-coding and multi-user scheduling. By doing that, the network capacity is further enhanced than the capacity of the single-user MIMO scheme.

In statistics, linear regression is a statistical model which estimates the linear relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. If the explanatory variables are measured with error then errors-in-variables models are required, also known as measurement error models.

SAMV is a parameter-free superresolution algorithm for the linear inverse problem in spectral estimation, direction-of-arrival (DOA) estimation and tomographic reconstruction with applications in signal processing, medical imaging and remote sensing. The name was coined in 2013 to emphasize its basis on the asymptotically minimum variance (AMV) criterion. It is a powerful tool for the recovery of both the amplitude and frequency characteristics of multiple highly correlated sources in challenging environments. Applications include synthetic-aperture radar, computed tomography scan, and magnetic resonance imaging (MRI).

In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as

References

  1. A. Tulino, A. Lozano, S. Verdú, Impact of antenna correlation on the capacity of multiantenna channels, IEEE Transactions on Information Theory, vol 51, pp. 2491-2509, 2005.
  2. 1 2 3 E. Björnson, B. Ottersten, A Framework for Training-Based Estimation in Arbitrarily Correlated Rician MIMO Channels with Rician Disturbance, IEEE Transactions on Signal Processing, vol 58, pp. 1807-1820, 2010.
  3. J. Kermoal, L. Schumacher, K.I. Pedersen, P. Mogensen, F. Frederiksen, A Stochastic MIMO Radio Channel Model With Experimental Validation Archived 2009-12-29 at the Wayback Machine , IEEE Journal on Selected Areas Communications, vol 20, pp. 1211-1226, 2002.
  4. M. Biguesh and A. Gershman, Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals Archived March 6, 2009, at the Wayback Machine , IEEE Transactions on Signal Processing, vol 54, pp. 884-893, 2006.
  5. Y. Li, L.J. Cimini, and N.R. Sollenberger, Robust channel estimation for OFDM systems with rapid dispersive fading channels, IEEE Transactions on Communications, vol 46, pp. 902-915, July 1998.
  6. M. D. Nisar, W. Utschick and T. Hindelang, Maximally Robust 2-D Channel Estimation for OFDM Systems, IEEE Transactions on Signal Processing, vol 58, pp. 3163-3172, June 2010.
  7. Marinberg, Ben; Cohen, Ariel; Ben-Dror, Eilam; Permuter, Haim H. (14 December 2020). "A Study on MIMO Channel Estimation by 2D and 3D Convolutional Neural Networks". 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). pp. 1–6. arXiv: 2011.08970 . doi:10.1109/ANTS50601.2020.9342797. ISBN   978-1-7281-9290-1. S2CID   226994048.
  8. A. Zhuang, E.S. Lohan, and M. Renfors, "Comparison of decision-directed and pilot-aided algorithms for complex channel tap estimation in downlink WCDMA systems", in Proc. of 11th IEEE Personal and Indoor Mobile Radio Communications (PIMRC), vol. 2, Sept. 2000, p. 1121-1125.