Channel sounding

Last updated

Channel sounding is a technique that evaluates the radio environment for wireless communication, especially MIMO systems. Because of the effect of terrain and obstacles, wireless signals propagate in multiple paths (the multipath effect). To minimize or use the multipath effect, engineers use channel sounding to process the multidimensional spatial-temporal signal and estimate channel characteristics. This helps simulate and design wireless systems.

Contents

Motivation & applications

Mobile radio communication performance is significantly affected by the radio propagation environment. [1] Blocking by buildings and natural obstacles creates multiple paths between the transmitter and the receiver, with different time variances, phases and attenuations. In a single-input, single-output (SISO) system, multiple propagation paths can create problems for signal optimization. However, based on the development of multiple input, multiple output (MIMO) systems, it can enhance channel capacity and improve QoS. [2] In order to evaluate effectiveness of these multiple antenna systems, a measurement of the radio environment is needed. Channel sounding is such a technique that can estimate the channel characteristics for the simulation and design of antenna arrays. [3]

Problem statement & basics

MIMO sounding MIMO SOUNDING.jpg
MIMO sounding

In a multipath system, the wireless channel is frequency dependent, time dependent, and position dependent. Therefore, the following parameters describe the channel: [2]

To characterize the propagation path between each transmitter element and each receiver element, engineers transmit a broadband multi-tone test signal. The transmitter's continuous periodic test sequence arrives at the receiver, and is correlated with the original sequence. This impulse-like auto correlation function is called channel impulse response (CIR). [5] By obtaining the transfer function of CIR, we can make an estimation of the channel environment and improve the performance.

Description of existing approaches

MIMO Vector Channel Sounder

Based on multiple antennas at both transmitters and receivers, a MIMO vector channel sounder can effectively collect the propagation direction at both ends of the connection and significantly improve resolution of the multiple path parameters. [1]

K-D model of wave propagation

Planar wave model Planar wave model.jpg
Planar wave model

Engineers model wave propagation as a finite sum of discrete, locally planar waves instead of a ray tracing model. This reduces computation and lowers requirements for optics knowledge. The waves are considered planar between the transmitters and the receivers. Two other important assumptions are:

  • Relative bandwidth is small enough so that the time delay can be simply transformed to a phase shift among the antennas.
  • The array aperture is small enough that there is no observable magnitude variation.

Based on such assumptions, the basic signal model is described as:

where is the TDOA (Time Difference of Arrival) of the wave-front . are DOA at the receiver and are DOD at the transmitter, is the Doppler shift. [1]

Real-Time Ultra-wideband MIMO Channel Sounding

A higher bandwidth for channel measurement is a goal for future sounding devices. The new real-time UWB channel sounder can measure the channel in a larger bandwidth from near zero to 5 GHz. The real time UWB MIMO channel sounding is greatly improving accuracy of localization and detection, which facilitates precisely tracking mobile devices. [6]

Excitation signal

A multitoned signal is chosen as the excitation signal.

where is the center frequency, ( is Bandwidth, is Number of multitones) is the tone spacing, and is the phase of the tone. we can obtain by

Data post-processing

RUSK SOUNDING.
a
m
a
x
{\displaystyle \alpha _{max}}
is the maximum Doppler frequency.
t
m
a
x
{\displaystyle \tau _{max}}
is the maximum duration of the impulse response and S is the channel's spread (the red rectangle in the figure). Csprinciple1 site4 (1).gif
RUSK SOUNDING. is the maximum Doppler frequency. is the maximum duration of the impulse response and S is the channel's spread (the red rectangle in the figure).
  1. A DFT over K-1 (one waveform lost due to array switching) waveforms that measured in each channel is performed (K: waveforms per channel).
  2. The frequency domain samples at the multitone frequencies are picked at every sample.
  3. An estimated channel transfer function is obtained by:

where is the noise power, is a reference signal and is the samples. The scaling factor c is defined as

RUSK Channel Sounder

A RUSK channel sounder excites all frequencies simultaneously, so that the frequency response of all frequencies can be measured. The test signal is periodic in time with period . The period must be longer than the duration of the channel's impulse response in order to capture all delayed multipath components at the receiver. The figure shows a typical channel impulse response (CIR) for a RUSK sounder. A secondary time variable is introduced so that the CIR is a function of the delay time and the observation time . A delay-Doppler spectrum is obtained by Fourier transformation. [4]

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

<span class="mw-page-title-main">Fermi's interaction</span> Mechanism of beta decay proposed in 1933

In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.

<span class="mw-page-title-main">Hamilton–Jacobi equation</span> A reformulation of Newtons laws of motion using the calculus of variations

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Wavelet transform</span> Mathematical technique used in data compression and analysis

In mathematics, a wavelet series is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.

<span class="mw-page-title-main">Wigner distribution function</span>

The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

The Poisson–Boltzmann equation is a useful equation in many settings, whether it be to understand physiological interfaces, polymer science, electron interactions in a semiconductor, or more. It aims to describe the distribution of the electric potential in solution in the direction normal to a charged surface. This distribution is important to determine how the electrostatic interactions will affect the molecules in solution. The Poisson–Boltzmann equation is derived via mean-field assumptions. From the Poisson–Boltzmann equation many other equations have been derived with a number of different assumptions.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.

Phase-comparison monopulse is a technique used in radio frequency (RF) applications such as radar and direction finding to accurately estimate the direction of arrival of a signal from the phase difference of the signal measured on two separated antennas or more typically from displaced phase centers of an array antenna. Phase-comparison monopulse differs from amplitude-comparison monopulse in that the former uses displaced phase centers with a common beam pointing direction, while the latter uses a common phase center and displaced beam pointing directions.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times. More generally it can be seen to be a special case of a Markov renewal process.

Coda wave interferometry is an ultrasound technique for detection of weak and local changes in complex inhomogeneous media. Sound waves that travel through a medium are scattered multiple times by heterogeneities in the medium, or boundaries in a sample of limited size, and generate slowly decaying waves, called coda waves.

The fracture of soft materials involves large deformations and crack blunting before propagation of the crack can occur. Consequently, the stress field close to the crack tip is significantly different from the traditional formulation encountered in the Linear elastic fracture mechanics. Therefore, fracture analysis for these applications requires a special attention. The Linear Elastic Fracture Mechanics (LEFM) and K-field are based on the assumption of infinitesimal deformation, and as a result are not suitable to describe the fracture of soft materials. However, LEFM general approach can be applied to understand the basics of fracture on soft materials. The solution for the deformation and crack stress field in soft materials considers large deformation and is derived from the finite strain elastostatics framework and hyperelastic material models.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

  1. 1 2 3 Thomä, R. S., Hampicke, D., Richter, A., Sommerkorn, G., & Trautwein, U. (2001). MIMO vector channel sounder measurement for smart antenna system evaluation. European Transactions on Telecommunications, 12(5), 427-438.
  2. 1 2 Belloni, Fabio. "Channel Sounding" (PDF).
  3. Laurenson, D., & Grant, P. (2006, September). A review of radio channel sounding techniques. In Proc. EUSIPCO.
  4. 1 2 3 "RUSK MIMO Data Sheet" (PDF). Archived from the original (PDF) on 2015-12-22.
  5. Thoma, R. S., Landmann, M., Sommerkorn, G., & Richter, A. (2004, May). Multidimensional high-resolution channel sounding in mobile radio. Proceedings of the 21st IEEE. In Instrumentation and Measurement Technology Conference, 2004. IMTC 04. (Vol. 1, pp. 257-262).
  6. Sangodoyin, S., Salmi, J., Niranjayan, S., & Molisch, A. F. (2012, March). Real-time ultrawideband MIMO channel sounding. In 6th European Conference Antennas and Propagation (EUCAP), 2012 (pp. 2303-2307).