Channel sounding is a technique that evaluates a radio environment for wireless communication, especially MIMO systems. Because of the effect of terrain and obstacles, wireless signals propagate in multiple paths (the multipath effect). To minimize or use the multipath effect, engineers use channel sounding to process the multidimensional spatial–temporal signal and estimate channel characteristics. This helps simulate and design wireless systems.
Mobile radio communication performance is significantly affected by the radio propagation environment. [1] Blocking by buildings and natural obstacles creates multiple paths between the transmitter and the receiver, with different time variances, phases and attenuations. In a single-input, single-output (SISO) system, multiple propagation paths can create problems for signal optimization. However, based on the development of multiple input, multiple output (MIMO) systems, it can enhance channel capacity and improve QoS. [2] In order to evaluate effectiveness of these multiple antenna systems, a measurement of the radio environment is needed. Channel sounding is such a technique that can estimate the channel characteristics for the simulation and design of antenna arrays. [3]
In a multipath system, the wireless channel is frequency dependent, time dependent, and position dependent. Therefore, the following parameters describe the channel: [2]
To characterize the propagation path between each transmitter element and each receiver element, engineers transmit a broadband multi-tone test signal. The transmitter's continuous periodic test sequence arrives at the receiver, and is correlated with the original sequence. This impulse-like auto correlation function is called channel impulse response (CIR). [5] By obtaining the transfer function of CIR, we can make an estimation of the channel environment and improve the performance.
Based on multiple antennas at both transmitters and receivers, a MIMO vector channel sounder can effectively collect the propagation direction at both ends of the connection and significantly improve resolution of the multiple path parameters. [1]
Engineers model wave propagation as a finite sum of discrete, locally planar waves instead of a ray tracing model. This reduces computation and lowers requirements for optics knowledge. The waves are considered planar between the transmitters and the receivers. Two other important assumptions are:
Based on such assumptions, the basic signal model is described as:
where is the TDOA (time difference of arrival) of the wave-front . are DOA at the receiver and are DOD at the transmitter, is the Doppler shift. [1]
A higher bandwidth for channel measurement is a goal for future sounding devices. The new real-time UWB channel sounder can measure the channel in a larger bandwidth from near zero to 5 GHz. The real time UWB MIMO channel sounding is greatly improving accuracy of localization and detection, which facilitates precisely tracking mobile devices. [6]
A multitoned signal is chosen as the excitation signal.
where is the center frequency, ( is Bandwidth, is Number of multitones) is the tone spacing, and is the phase of the tone. we can obtain by
where is the noise power, is a reference signal and is the samples. The scaling factor c is defined as
A RUSK channel sounder excites all frequencies simultaneously, so that the frequency response of all frequencies can be measured. The test signal is periodic in time with period . The period must be longer than the duration of the channel's impulse response in order to capture all delayed multipath components at the receiver. The figure shows a typical channel impulse response (CIR) for a RUSK sounder. A secondary time variable is introduced so that the CIR is a function of the delay time and the observation time . A delay-Doppler spectrum is obtained by Fourier transformation. [4]
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In mathematics, a wavelet series is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.
The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.
In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.
The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.
The Poisson–Boltzmann equation describes the distribution of the electric potential in solution in the direction normal to a charged surface. This distribution is important to determine how the electrostatic interactions will affect the molecules in solution. The Poisson–Boltzmann equation is derived via mean-field assumptions. From the Poisson–Boltzmann equation many other equations have been derived with a number of different assumptions.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.
Phase-comparison monopulse is a technique used in radio frequency (RF) applications such as radar and direction finding to accurately estimate the direction of arrival of a signal from the phase difference of the signal measured on two separated antennas or more typically from displaced phase centers of an array antenna. Phase-comparison monopulse differs from amplitude-comparison monopulse in that the former uses displaced phase centers with a common beam pointing direction, while the latter uses a common phase center and displaced beam pointing directions.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.
In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times. More generally it can be seen to be a special case of a Markov renewal process.
Coda wave interferometry is an ultrasound technique for detection of weak and local changes in complex inhomogeneous media. Sound waves that travel through a medium are scattered multiple times by heterogeneities in the medium, or boundaries in a sample of limited size, and generate slowly decaying waves, called coda waves.
Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.
In supersymmetry, type IIB supergravity is the unique supergravity in ten dimensions with two supercharges of the same chirality. It was first constructed in 1983 by John Schwarz and independently by Paul Howe and Peter West at the level of its equations of motion. While it does not admit a fully covariant action due to the presence of a self-dual field, it can be described by an action if the self-duality condition is imposed by hand on the resulting equations of motion. The other types of supergravity in ten dimensions are type IIA supergravity, which has two supercharges of opposing chirality, and type I supergravity, which has a single supercharge. The theory plays an important role in modern physics since it is the low-energy limit of type IIB string theory.