Part of a series on the |
Wireless network technologies |
---|
Analog |
Digital |
Mobile telecommunications |
International Mobile Telecommunications-Advanced (IMT-Advanced Standard) are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G (or in Turkey as 4.5G [1] [2] [3] ) mobile phone and Internet access service.
An IMT-Advanced system is expected to provide a comprehensive and secure all-IP based mobile broadband solution to laptop computer wireless modems, smartphones, and other mobile devices. Facilities such as ultra-broadband Internet access, voice over IP, gaming services, and streamed multimedia may be provided to users.
IMT-Advanced is intended to accommodate the quality of service (QoS) and rate requirements set by further development of existing applications like mobile broadband access, Multimedia Messaging Service (MMS), video chat, mobile TV, but also new services like high-definition television (HDTV). 4G may allow roaming with wireless local area networks and may interact with digital video broadcasting systems. It was meant to go beyond the International Mobile Telecommunications-2000 requirements, which specify mobile phones systems marketed as 3G.
Specific requirements of the IMT-Advanced report included:
The first set of 3GPP requirements on LTE Advanced was approved in June 2008. [10]
A summary of the technologies that have been studied as the basis for LTE Advanced is included in a technical report. [11]
While the ITU adopts requirements and recommendations for technologies that would be used for future communications, they do not actually perform the development work themselves, and countries do not consider them binding standards. Other trade groups and standards bodies such as the Institute of Electrical and Electronics Engineers, the WiMAX Forum, and 3GPP also have a role.
Physical layer transmission techniques expected to be used include: [12]
Long Term Evolution (LTE) has a theoretical net bitrate maximum capacity of 100 Mbit/s in the downlink and 50 Mbit/s in the uplink if a 20 MHz channel is used. The capacity is more if a MIMO (multiple-input and multiple-output) antenna array is used. The physical radio interface was at an early stage named "High-Speed Orthogonal Packet Access" and is now named E-UTRA.
The CDMA's spread spectrum radio technology that was used in 3G systems and cdmaOne has been abandoned. It was replaced by orthogonal frequency-division multiple access and other frequency-division multiple access schemes. This is combined with MIMO antenna arrays, dynamic channel allocation, and channel-dependent scheduling.
The first publicly available LTE services were branded "4G" and opened in Sweden's capital city Stockholm (Ericsson system) and Norway's capital city Oslo (a Huawei system) on 14 December 2009. The user terminals were manufactured by Samsung. [13] All three major U.S. wireless carriers offer LTE services.
In South Korea, SK Telecom and LG U+ have enabled access to LTE service since July 2011 for data devices, slated to go nationwide by 2012. [14]
The Mobile WiMAX (IEEE 802.16e-2005) mobile wireless broadband access (MWBA) standard (marketed as WiBro in South Korea) is sometimes branded 4G, and offers peak data rates of 128 Mbit/s downlink and 56 Mbit/s uplink over 20 MHz wide channels.[ citation needed ]
The first commercial mobile WiMAX service was opened by KT in Seoul, South Korea in June 2006. [15]
In September 2008, Sprint Nextel marketed Mobile WiMAX as a "4G" network even though it did not fulfill the IMT Advanced requirements. [16]
In Russia, Belarus, and Nicaragua, WiMax broadband internet access is offered by the Russian company Scartel and is also branded 4G, Yota.
WiMAX | |
---|---|
Peak download | 128 Mbit/s |
Peak upload | 56 Mbit/s |
Ultra Mobile Broadband (UMB) was the brand name for a discontinued 4G project within the 3GPP2 standardization group to improve the CDMA2000 mobile phone standard for next-generation applications and requirements. In November 2008, Qualcomm, UMB's lead sponsor, announced it was ending development of the technology, favoring LTE instead. [17] The objective was to achieve data speeds over 275 Mbit/s downstream and over 75 Mbit/s upstream.
At an early stage, the Flash-OFDM system was expected to be further developed into a 4G standard.
The iBurst technology, using High Capacity Spatial Division Multiple Access (HC-SDMA), was at an early stage considered as a 4G predecessor. It was incorporated by the Mobile Broadband Wireless Access (MBWA) working group into the IEEE 802.20 standard in 2008. [18]
In October 2010, ITU-R Working Party 5D approved two industry-developed technologies. [19] On December 6, 2010, ITU noted that while current versions of LTE, WiMax and other evolved 3G technologies do not fulfill IMT-Advanced requirements for 4G, some may use the term "4G" in an "undefined" fashion to represent forerunners to IMT-Advanced that show "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed." [20]
LTE Advanced (Long-term-evolution Advanced) was formally submitted by the 3GPP organization to ITU-T in the fall of 2009, and was released in 2011. The target of 3GPP LTE Advanced was to reach and surpass the ITU requirements. [21] LTE Advanced is an improvement on the existing LTE network. Release 10 of LTE is expected to achieve the LTE Advanced speeds. Release 8 in 2009 supported up to 300 Mbit/s download speeds which were still short of the IMT-Advanced standards. [22]
The WirelessMAN-Advanced evolution of IEEE 802.16e was published in May 2011 as standard IEEE 802.16m-2011. The relevant industry promoting the technology gave it the marketing name of WiMAX Release 2. It had an objective to fulfill the IMT-Advanced criteria. [23] [24] The IMT-Advanced group formally approved this technology as meeting its criteria in October 2010. [25] In the second half of 2012, the 802.16m-2011 standard was rolled up into the 802.16-2012 standard, excluding the WirelessMAN-Advanced radio interface part of the 802.16m-2011 standard, which got moved to IEEE Std 802.16.1-2012.
The following table shows a comparison of IMT-Advanced candidate systems as well as other competing technologies.
Parts of this article (those related to template) need to be updated.(November 2018) |
Common name | Family | Primary use | Radio tech | Downstream (Mbit/s) | Upstream (Mbit/s) | Notes |
---|---|---|---|---|---|---|
HSPA+ | 3GPP | Mobile Internet | CDMA/TDMA/FDD MIMO | 21 42 84 672 | 5.8 11.5 22 168 | HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbit/s. |
LTE | 3GPP | Mobile Internet | OFDMA/TDMA/MIMO/SC-FDMA/for LTE-FDD/for LTE-TDD | 100 Cat3 150 Cat4 300 Cat5 25065 Cat17 1658 Cat19 (in 20 MHz FDD) [26] | 50 Cat3/4 75 Cat5 2119 Cat17 13563 Cat19 (in 20 MHz FDD) [26] | LTE-Advanced Pro offers rates in excess of 3 Gbit/s to mobile users. |
WiMax rel 1 | 802.16 | WirelessMAN | MIMO-SOFDMA | 37 (10 MHz TDD) | 17 (10 MHz TDD) | With 2x2 MIMO. [27] |
WiMax rel 1.5 | 802.16-2009 | WirelessMAN | MIMO-SOFDMA | 83 (20 MHz TDD) 141 (2x20 MHz FDD) | 46 (20 MHz TDD) 138 (2x20 MHz FDD) | With 2x2 MIMO.Enhanced with 20 MHz channels in 802.16-2009 [27] |
WiMAX rel 2.0 | 802.16m | WirelessMAN | MIMO-SOFDMA | 2x2 MIMO 110 (20 MHz TDD) 183 (2x20 MHz FDD) 4x4 MIMO 219 (20 MHz TDD) 365 (2x20 MHz FDD) | 2x2 MIMO 70 (20 MHz TDD) 188 (2x20 MHz FDD) 4x4 MIMO 140 (20 MHz TDD) 376 (2x20 MHz FDD) | Also, low mobility users can aggregate multiple channels to get a download throughput of up to 1 Gbit/s [27] |
Flash-OFDM | Flash-OFDM | Mobile Internet mobility up to 200 mph (350 km/h) | Flash-OFDM | 5.3 10.6 15.9 | 1.8 3.6 5.4 | Mobile range 30 km (18 miles) Extended range 55 km (34 miles) |
HIPERMAN | HIPERMAN | Mobile Internet | OFDM | 56.9 | ||
Wi-Fi | 802.11 (11ax) | Wireless LAN | OFDM/OFDMA/CSMA/MIMO/MU-MIMO/Half duplex | 9600 Wi-Fi 6 | Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km) | |
iBurst | 802.20 | Mobile Internet | HC-SDMA/TDD/MIMO | 95 | 36 | Cell Radius: 3–12 km Speed: 250 km/h Spectral Efficiency: 13 bits/s/Hz/cell Spectrum Reuse Factor: "1" |
EDGE Evolution | GSM | Mobile Internet | TDMA/FDD | 1.6 | 0.5 | 3GPP Release 7 |
UMTS W-CDMA HSPA (HSDPA+HSUPA) | 3GPP | Mobile Internet | CDMA/FDD CDMA/FDD/MIMO | 0.384 14.4 | 0.384 5.76 | HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s. |
UMTS-TDD | 3GPP | Mobile Internet | CDMA/TDD | 16 | Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA | |
EV-DO Rel. 0 EV-DO Rev.A EV-DO Rev.B | 3GPP2 | Mobile Internet | CDMA/FDD | 2.45 3.1 4.9xN | 0.15 1.8 1.8xN | Rev B note: N is the number of 1.25 MHz carriers used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received. |
Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennas, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Comparison of wireless data standards .
For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.
Enhanced Data rates for GSM Evolution (EDGE), also known as 2.75G, Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), and Enhanced Data rates for Global Evolution, is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.
General Packet Radio Service (GPRS), also called 2.5G, is a packet orientated mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).
The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.
3G is the third generation of wireless mobile telecommunications technology. It is the upgrade over 2G, 2.5G, GPRS and 2.75G Enhanced Data Rates for GSM Evolution networks, offering faster data transfer, and better voice quality. This network was superseded by 4G, and later on by 5G. This network is based on a set of standards used for mobile devices and mobile telecommunications use services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.
Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.
4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.
Evolution-Data Optimized is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. EV-DO is an evolution of the CDMA2000 (IS-2000) standard which supports high data rates and can be deployed alongside a wireless carrier's voice services. It uses advanced multiplexing techniques including code-division multiple access (CDMA) as well as time-division multiplexing (TDM) to maximize throughput. It is a part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.
IEEE 802.16 is a series of wireless broadband standards written by the Institute of Electrical and Electronics Engineers (IEEE). The IEEE Standards Board established a working group in 1999 to develop standards for broadband for wireless metropolitan area networks. The Workgroup is a unit of the IEEE 802 local area network and metropolitan area network standards committee.
WiBro is a wireless broadband Internet technology developed by the South Korean telecoms industry. WiBro is the South Korean service name for IEEE 802.16e international standard. By the end of 2012, the Korean Communications Commission intends to increase WiBro broadband connection speeds to 10 Mbit/s, around ten times the 2009 speed, which will complement their 1 Gbit/s fibre-optic network. The WiBro networks were shut down at the end of 2018.
Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.
E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.
A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.
Mobile broadband is the marketing term for wireless Internet access via mobile networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.
In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.
Centre of Excellence in Wireless Technology (CEWiT) is a nonprofit research society of IIT Madras set up to research potential innovations in wireless technology. The organization is set up with support from Ministry of Communication and IT and the Indian telecom industry.
LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.
In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.
The Next Generation Mobile Networks (NGMN) Alliance is a mobile telecommunications association of mobile operators, vendors, manufacturers and research institutes. It was founded by major mobile operators in 2006 as an open forum to evaluate candidate technologies to develop a common view of solutions for the next evolution of wireless networks. Its objective is to ensure the successful commercial launch of future mobile broadband networks through a roadmap for technology and friendly user trials. Its office is in Frankfurt, Germany.
Bernhard H. Walke is a pioneer of mobile Internet access and professor emeritus at RWTH Aachen University in Germany. He is a driver of wireless and mobile 2G to 5G cellular radio networks technologies. In 1985, he proposed a local cellular radio network comprising technologies in use today in 2G, 4G and discussed for 5G systems. For example, self-organization of a radio mesh network, integration of circuit- and packet switching, de-centralized radio resource control, TDMA/spread spectrum data transmission, antenna beam steering, spatial beam multiplexing, interference coordination, S-Aloha based multiple access and demand assigned traffic channels, mobile broadband transmission using mm-waves, and multi-hop communication.