Spectral efficiency

Last updated

Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control (the channel access protocol). [1]

Contents

The link spectral efficiency of a digital communication system is measured in bit/s/Hz , [2] or, less frequently but unambiguously, in (bit/s)/Hz. It is the net bit rate (useful information rate excluding error-correcting codes) or maximum throughput divided by the bandwidth in hertz of a communication channel or a data link. Alternatively, the spectral efficiency may be measured in bit/symbol, which is equivalent to bits per channel use (bpcu), implying that the net bit rate is divided by the symbol rate (modulation rate) or line code pulse rate.

Link spectral efficiency is typically used to analyze the efficiency of a digital modulation method or line code, sometimes in combination with a forward error correction (FEC) code and other physical layer overhead. In the latter case, a "bit" refers to a user data bit; FEC overhead is always excluded.

The modulation efficiency in bit/s is the gross bit rate (including any error-correcting code) divided by the bandwidth.

Example 1: A transmission technique using one kilohertz of bandwidth to transmit 1,000 bits per second has a modulation efficiency of 1 (bit/s)/Hz.
Example 2: A V.92 modem for the telephone network can transfer 56,000 bit/s downstream and 48,000 bit/s upstream over an analog telephone network. Due to filtering in the telephone exchange, the frequency range is limited to between 300 hertz and 3,400 hertz, corresponding to a bandwidth of 3,400 − 300 = 3,100 hertz. The spectral efficiency or modulation efficiency is 56,000/3,100 = 18.1 (bit/s)/Hz downstream, and 48,000/3,100 = 15.5 (bit/s)/Hz upstream.

An upper bound for the attainable modulation efficiency is given by the Nyquist rate or Hartley's law as follows: For a signaling alphabet with M alternative symbols, each symbol represents N = log2M bits. N is the modulation efficiency measured in bit/symbol or bpcu. In the case of baseband transmission (line coding or pulse-amplitude modulation) with a baseband bandwidth (or upper cut-off frequency) B, the symbol rate can not exceed 2B symbols/s in view to avoid intersymbol interference. Thus, the spectral efficiency can not exceed 2N (bit/s)/Hz in the baseband transmission case. In the passband transmission case, a signal with passband bandwidth W can be converted to an equivalent baseband signal (using undersampling or a superheterodyne receiver), with upper cut-off frequency W/2. If double-sideband modulation schemes such as QAM, ASK, PSK or OFDM are used, this results in a maximum symbol rate of W symbols/s, and in that the modulation efficiency can not exceed N (bit/s)/Hz. If digital single-sideband modulation is used, the passband signal with bandwidth W corresponds to a baseband message signal with baseband bandwidth W, resulting in a maximum symbol rate of 2W and an attainable modulation efficiency of 2N (bit/s)/Hz.

Example 3: A 16QAM modem has an alphabet size of M = 16 alternative symbols, with N = 4 bit/symbol or bpcu. Since QAM is a form of double sideband passband transmission, the spectral efficiency cannot exceed N = 4 (bit/s)/Hz.
Example 4: The 8VSB (8-level vestigial sideband) modulation scheme used in the ATSC digital television standard gives N=3 bit/symbol or bpcu. Since it can be described as nearly single-side band, the modulation efficiency is close to 2N = 6 (bit/s)/Hz. In practice, ATSC transfers a gross bit rate of 32 Mbit/s over a 6 MHz wide channel, resulting in a modulation efficiency of 32/6 = 5.3 (bit/s)/Hz.
Example 5: The downlink of a V.92 modem uses a pulse-amplitude modulation with 128 signal levels, resulting in N = 7 bit/symbol. Since the transmitted signal before passband filtering can be considered as baseband transmission, the spectral efficiency cannot exceed 2N = 14 (bit/s)/Hz over the full baseband channel (0 to 4 kHz). As seen above, a higher spectral efficiency is achieved if we consider the smaller passband bandwidth.

If a forward error correction code is used, the spectral efficiency is reduced from the uncoded modulation efficiency figure.

Example 6: If a forward error correction (FEC) code with code rate 1/2 is added, meaning that the encoder input bit rate is one half the encoder output rate, the spectral efficiency is 50% of the modulation efficiency. In exchange for this reduction in spectral efficiency, FEC usually reduces the bit-error rate, and typically enables operation at a lower signal-to-noise ratio (SNR).

An upper bound for the spectral efficiency possible without bit errors in a channel with a certain SNR, if ideal error coding and modulation is assumed, is given by the Shannon–Hartley theorem.

Example 7: If the SNR is 1, corresponding to 0 decibel, the link spectral efficiency can not exceed 1 (bit/s)/Hz for error-free detection (assuming an ideal error-correcting code) according to Shannon–Hartley regardless of the modulation and coding.

Note that the goodput (the amount of application layer useful information) is normally lower than the maximum throughput used in the above calculations, because of packet retransmissions, higher protocol layer overhead, flow control, congestion avoidance, etc. On the other hand, a data compression scheme, such as the V.44 or V.42bis compression used in telephone modems, may however give higher goodput if the transferred data is not already efficiently compressed.

The link spectral efficiency of a wireless telephony link may also be expressed as the maximum number of simultaneous calls over 1 MHz frequency spectrum in erlangs per megahertz, or E/MHz. This measure is also affected by the source coding (data compression) scheme. It may be applied to analog as well as digital transmission.

In wireless networks, the link spectral efficiency can be somewhat misleading, as larger values are not necessarily more efficient in their overall use of radio spectrum. In a wireless network, high link spectral efficiency may result in high sensitivity to co-channel interference (crosstalk), which affects the capacity. For example, in a cellular telephone network with frequency reuse, spectrum spreading and forward error correction reduce the spectral efficiency in (bit/s)/Hz but substantially lower the required signal-to-noise ratio in comparison to non-spread spectrum techniques. This can allow for much denser geographical frequency reuse that compensates for the lower link spectral efficiency, resulting in approximately the same capacity (the same number of simultaneous phone calls) over the same bandwidth, using the same number of base station transmitters. As discussed below, a more relevant measure for wireless networks would be system spectral efficiency in bit/s/Hz per unit area. However, in closed communication links such as telephone lines and cable TV networks, and in noise-limited wireless communication system where co-channel interference is not a factor, the largest link spectral efficiency that can be supported by the available SNR is generally used.

System spectral efficiency or area spectral efficiency

In digital wireless networks, the system spectral efficiency or area spectral efficiency is typically measured in (bit/s)/Hz per unit area, in (bit/s)/Hz per cell , or in (bit/s)/Hz per site. It is a measure of the quantity of users or services that can be simultaneously supported by a limited radio frequency bandwidth in a defined geographic area. [1] It may for example be defined as the maximum aggregated throughput or goodput, i.e. summed over all users in the system, divided by the channel bandwidth and by the covered area or number of base station sites. This measure is affected not only by the single-user transmission technique, but also by multiple access schemes and radio resource management techniques utilized. It can be substantially improved by dynamic radio resource management. If it is defined as a measure of the maximum goodput, retransmissions due to co-channel interference and collisions are excluded. Higher-layer protocol overhead (above the media access control sublayer) is normally neglected.

Example 8: In a cellular system based on frequency-division multiple access (FDMA) with a fixed channel allocation (FCA) cellplan using a frequency reuse factor of 1/4, each base station has access to 1/4 of the total available frequency spectrum. Thus, the maximum possible system spectral efficiency in (bit/s)/Hz per site is 1/4 of the link spectral efficiency. Each base station may be divided into 3 cells by means of 3 sector antennas, also known as a 4/12 reuse pattern. Then each cell has access to 1/12 of the available spectrum, and the system spectral efficiency in (bit/s)/Hz per cell or (bit/s)/Hz per sector is 1/12 of the link spectral efficiency.

The system spectral efficiency of a cellular network may also be expressed as the maximum number of simultaneous phone calls per area unit over 1 MHz frequency spectrum in E/MHz per cell, E/MHz per sector, E/MHz per site, or (E/MHz)/m2. This measure is also affected by the source coding (data compression) scheme. It may be used in analog cellular networks as well.

Low link spectral efficiency in (bit/s)/Hz does not necessarily mean that an encoding scheme is inefficient from a system spectral efficiency point of view. As an example, consider Code Division Multiplexed Access (CDMA) spread spectrum, which is not a particularly spectral-efficient encoding scheme when considering a single channel or single user. However, the fact that one can "layer" multiple channels on the same frequency band means that the system spectrum utilization for a multi-channel CDMA system can be very good.

Example 9: In the W-CDMA 3G cellular system, every phone call is compressed to a maximum of 8,500 bit/s (the useful bitrate), and spread out over a 5 MHz wide frequency channel. This corresponds to a link throughput of only 8,500/5,000,000 = 0.0017 (bit/s)/Hz. Let us assume that 100 simultaneous (non-silent) calls are possible in the same cell. Spread spectrum makes it possible to have as low a frequency reuse factor as 1, if each base station is divided into 3 cells by means of 3 directional sector antennas. This corresponds to a system spectrum efficiency of over 1 × 100 × 0.0017 = 0.17 (bit/s)/Hz per site, and 0.17/3 = 0.06 (bit/s)/Hz per cell or sector.

The spectral efficiency can be improved by radio resource management techniques such as efficient fixed or dynamic channel allocation, power control, link adaptation and diversity schemes.

A combined fairness measure and system spectral efficiency measure is the fairly shared spectral efficiency.

Comparison table

Examples of predicted numerical spectral efficiency values of some common communication systems can be found in the table below. These results will not be achieved in all systems. Those further from the transmitter will not get this performance.

Spectral efficiency of common communication systems
ServiceStandardLaunched,
year
Max. net bit rate
per carrier and
spatial stream,
R (Mbit/s)
Bandwidth
per carrier,
B (MHz)
Max. link spectral efficiency,
R/B ( bit/(s⋅Hz) )
Typical reuse factor, 1/KSystem spectral efficiency,
R/BK ( bit/(s⋅Hz) ) per site)
SISOMIMO
1G cellular NMT 450 modem19810.00120.0250.45170.064
1G cellular AMPS modem19830.0003 [3] 0.0300.00117 [4] 0.0015
2G cellular GSM 19910.013 × 8 timeslots = 0.1040.20.5219 (13 [5] in 1999)0.17 [5] (in 1999)
2G cellular D-AMPS 19910.013 × 3 timeslots = 0.0390.0301.319 (13 [5] in 1999)0.45 [5] (in 1999)
2.75G cellular CDMA2000 1× voice20000.0096 per phone call × 22 calls1.22880.0078 per call10.172 (fully loaded)
2.75G cellular GSM + EDGE 20030.384 (typ. 0.20)0.21.92 (typ. 1.00)130.33 [5]
2.75G cellular IS-136HS + EDGE 0.384 (typ. 0.27)0.2001.92 (typ. 1.35)130.45 [5]
3G cellular WCDMA FDD20010.38450.07710.51
3G cellular CDMA2000 1× PD20020.1531.22880.12510.1720 (fully loaded)
3G cellular CDMA2000 1×EV-DO Rev.A20023.0721.22882.511.3
Fixed WiMAX IEEE 802.16d 200496204.8141.2
3.5G cellular HSDPA 200721.154.2214.22
4G MBWA iBurst HC-SDMA 20053.90.6257.3 [6] 17.3
4G cellular LTE 200981.6204.0816.32 (4×4) [7] 1 (13 at the perimeters [8] )16.32
4G cellular LTE-Advanced 2013 [9] 75203.7530.00 (8×8) [7] 1 (13 at the perimeters [8] )30
Wi-Fi IEEE 802.11a/g 200354202.713[ citation needed ]0.900
Wi-Fi IEEE 802.11n (Wi-Fi 4)200772.2 (up to 150)20 (up to 40)3.61 (up to 3.75)Up to 15.0 (4×4, 40 MHz)13[ citation needed ]5.0 (4×4, 40 MHz)
Wi-Fi IEEE 802.11ac (Wi-Fi 5)2012433.3 (up to 866.7)80 (up to 160)5.42Up to 43.3 (8×8, 160 MHz) [10] 13[ citation needed ]14.4 (8×8, 160 MHz)
Wi-Fi IEEE 802.11ax (Wi-Fi 6)2019600.5 (up to 1201)80 (up to 160)7.5Up to 60 (8×8, 160 MHz)13[ citation needed ]20 (8×8, 160 MHz)
WiGig IEEE 802.11ad 20136756216031[ citation needed ]3
Trunked radio system TETRA, low FEC 19984 timeslots = 0.019 (0.029 without FEC) [11] [12] [13] 0.0250.817 [14] 0.1
Trunked radio system TETRA II with TEDS, 64-QAM, 150 kHz, low FEC 20114 timeslots = 0.538 [11] [12] [13] 0.150 (scalable to 0.025)3.6
Digital radio DAB 19950.576 to 1.1521.7120.34 to 0.67150.07 to 0.13
Digital radio DAB with SFN 19950.576 to 1.1521.7120.34 to 0.6710.34 to 0.67
Digital TV DVB-T 199731.67 (typ. 24) [15] 84.0 (typ. 3.0)17 [16] 0.57
Digital TV DVB-T with SFN 199631.67 (typ. 24) [15] 84.0 (typ. 3.0)14.0 (typ. 3.0)
Digital TV DVB-T2 200945.5 (typ. 40) [15] 85.7 (typ. 5.0)17 [16] 0.81
Digital TV DVB-T2 with SFN 200945.5 (typ. 40) [15] 85.7 (typ. 5.0)15.7 (typ. 5.0)
Digital TV DVB-S 199533.8 for 5.1 C/N (44.4 for 7.8 C/N) [17] 27.51.2 (1.6)14 [18] 0.3 (0.4)
Digital TV DVB-S2 200546 for 5.1 C/N (58.8 for 7.8 C/N) [17] 30 (typ.)1.5 (2.0)14 [18] 0.4 (0.5)
Digital TV ATSC with DTx 19963219.391.613.23
Digital TV DVB-H 20075.5 to 1180.68 to 1.4150.14 to 0.28
Digital TV DVB-H with SFN 20075.5 to 1180.68 to 1.410.68 to 1.4
Digital cable TV DVB-C 256-QAM mode19943866.33
Broadband CATV modem DOCSIS 3.1 QAM-4096, 25 kHz OFDM spacing, LDPC 20161890 [19] [20] 1929.84
Broadband modem ADSL2 downlink120.96212.47
Broadband modem ADSL2+ downlink282.10913.59
Telephone modem V.92 downlink19990.0560.00414.0

N/A means not applicable.

See also

Related Research Articles

<span class="mw-page-title-main">Bandwidth (signal processing)</span> Range of usable frequencies

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in unit of hertz.

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

<span class="mw-page-title-main">Baseband</span> Range of frequencies occupied by an unmodulated signal

In telecommunications and signal processing, baseband is the range of frequencies occupied by a signal that has not been modulated to higher frequencies. Baseband signals typically originate from transducers, converting some other variable into an electrical signal. For example, the electronic output of a microphone is a baseband signal that is analogous to the applied voice audio. In conventional analog radio broadcasting, the baseband audio signal is used to modulate an RF carrier signal of a much higher frequency.

A passband is the range of frequencies or wavelengths that can pass through a filter. For example, a radio receiver contains a bandpass filter to select the frequency of the desired radio signal out of all the radio waves picked up by its antenna. The passband of a receiver is the range of frequencies it can receive when it is tuned into the desired frequency (channel).

Data communication, including data transmission and data reception, is the transfer of data, transmitted and received over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.

<span class="mw-page-title-main">Frequency-division multiplexing</span> Signal processing technique in telecommunications

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

In telecommunications and computing, bit rate is the number of bits that are conveyed or processed per unit of time.

<span class="mw-page-title-main">Digital Radio Mondiale</span> Digital radio broadcasting standard

Digital Radio Mondiale is a set of digital audio broadcasting technologies designed to work over the bands currently used for analogue radio broadcasting including AM broadcasting—particularly shortwave—and FM broadcasting. DRM is more spectrally efficient than AM and FM, allowing more stations, at higher quality, into a given amount of bandwidth, using xHE-AAC audio coding format. Various other MPEG-4 codecs and Opus are also compatible, but the standard now specifies xHE-AAC.

<i>E</i><sub>b</sub>/<i>N</i><sub>0</sub> Normalized signal-to-noise ratio measure

In digital communication or data transmission, is a normalized signal-to-noise ratio (SNR) measure, also known as the "SNR per bit". It is especially useful when comparing the bit error rate (BER) performance of different digital modulation schemes without taking bandwidth into account.

Link adaptation, comprising adaptive coding and modulation (ACM) and others, is a term used in wireless communications to denote the matching of the modulation, coding and other signal and protocol parameters to the conditions on the radio link. For example, WiMAX uses a rate adaptation algorithm that adapts the modulation and coding scheme (MCS) according to the quality of the radio channel, and thus the bit rate and robustness of data transmission. The process of link adaptation is a dynamic one and the signal and protocol parameters change as the radio link conditions change—for example in High-Speed Downlink Packet Access (HSDPA) in Universal Mobile Telecommunications System (UMTS) this can take place every 2 ms.

In a digitally modulated signal or a line code, symbol rate, modulation rate or baud rate is the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time. The symbol rate is measured in baud (Bd) or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bit rate, expressed in bits per second.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.

In electronics and telecommunications, pulse shaping is the process of changing a transmitted pulses' waveform to optimize the signal for its intended purpose or the communication channel. This is often done by limiting the bandwidth of the transmission and filtering the pulses to control intersymbol interference. Pulse shaping is particularly important in RF communication for fitting the signal within a certain frequency band and is typically applied after line coding and modulation.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

CDMA spectral efficiency refers to the system spectral efficiency in bit/s/Hz/site or Erlang/MHz/site that can be achieved in a certain CDMA based wireless communication system. CDMA techniques are characterized by a very low link spectral efficiency in (bit/s)/Hz as compared to non-spread spectrum systems, but a comparable system spectral efficiency.

References

  1. 1 2 Guowang Miao, Jens Zander, Ki Won Sung, and Ben Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, ISBN   1107143217, 2016.
  2. Sergio Benedetto and Ezio Biglieri (1999). Principles of Digital Transmission: With Wireless Applications. Springer. ISBN   0-306-45753-9.
  3. C. T. Bhunia, Information Technology Network And Internet, New Age International, 2006, page 26.
  4. Lal Chand Godara, "Handbook of antennas in wireless communications", CRC Press, 2002, ISBN   9780849301247
  5. 1 2 3 4 5 6 Anders Furuskär, Jonas Näslund and Håkan Olofsson (1999), "Edge—Enhanced data rates for GSM and TDMA/136 evolution", Ericsson Review no. 1
  6. "KYOCERA's iBurst(TM) System Offers High Capacity, High Performance for the Broadband Era".
  7. 1 2 "4G LTE-Advanced Technology Overview - Keysight (formerly Agilent's Electronic Measurement)". www.keysight.com.
  8. 1 2 Giambene, Giovanni; Ali Yahiya, Tara (1 November 2013). "LTE planning for Soft Frequency Reuse". 2013 IFIP Wireless Days (WD). pp. 1–7. doi:10.1109/WD.2013.6686468. ISBN   978-1-4799-0543-0. S2CID   27200535 via ResearchGate.
  9. "LTE-Advanced Archives - ExtremeTech". ExtremeTech.
  10. "Whitepaper" (PDF). www.arubanetworks.com.
  11. 1 2 "TETRA vs TETRA2-Basic difference between TETRA and TETRA2". www.rfwireless-world.com.
  12. 1 2 "Application notes" (PDF). cdn.rohde-schwarz.com.
  13. 1 2 "Brochure" (PDF). tetraforum.pl.
  14. "Data". cept.org.
  15. 1 2 3 4 "Fact sheet" (PDF). www.dvb.org.
  16. 1 2 "List publication" (PDF). mns.ifn.et.tu-dresden.de.
  17. 1 2 "Factsheet" (PDF). www.dvb.org.
  18. 1 2 Christopoulos, Dimitrios; Chatzinotas, Symeon; Zheng, Gan; Grotz, Joël; Ottersten, Björn (4 May 2012). "Linear and nonlinear techniques for multibeam joint processing in satellite communications". EURASIP Journal on Wireless Communications and Networking. 2012 (1). doi: 10.1186/1687-1499-2012-162 .
  19. "Info" (PDF). scte-sandiego.org.
  20. [ dead link ]