Cell site

Last updated

Cell towers
Cell-Tower.jpg
A cell tower carrying antennas of four cellular networks (separated vertically on the supporting pole) (Cellular Installation (AWS))
Typecellular telephone site
First production20th century

A cell site, cell tower, or cellular base station is a cellular-enabled mobile device site where antennas and electronic communications equipment are placed—typically on a radio mast, tower, or other raised structure—to create a cell (or adjacent cells) in a cellular network. The raised structure typically supports antenna[ clarification needed ] and one or more sets of transmitter/receivers transceivers, digital signal processors, control electronics, a GPS receiver for timing (for CDMA2000/IS-95 or GSM systems), primary and backup electrical power sources, and sheltering. [1] [ third-party source needed ]

Contents

In Global System for Mobile Communications (GSM) networks, the correct term is Base Transceiver Station (BTS), and colloquial synonyms are "mobile phone mast" or "base station". Multiple cellular providers often save money by mounting their antennas on a common shared mast; since separate systems use different frequencies, antennas can be located close together without interfering with each other. Some provider companies operate multiple cellular networks and similarly use colocated base stations for two or more cellular networks, (CDMA2000 or GSM, for example).

Some cities require that cell sites be inconspicuous; they can be blended with the surrounding area [2] or mounted on buildings [3] or advertising towers.[ citation needed ] Preserved treescapes can often hide cell towers inside an artificial or preserved tree. These installations are generally referred to as concealed cell sites or stealth cell sites.

Overview

A cellular network is a network of handheld mobile phones (cell phones) in which each phone communicates with the telephone network by radio waves through a local antenna at a cellular base station (cell site). The coverage area in which service is provided is divided into a mosaic of small geographical areas called "cells", each served by a separate low power multichannel transceiver and antenna at a base station. All the cell phones within a cell communicate with the system through that cell's antenna, on separate frequency channels assigned by the base station from a common pool of frequencies used by the system.

The purpose of cellular organization is to conserve radio bandwidth by frequency reuse; the low power radio signals used within each cell do not travel far beyond the cell, so the radio channels can be reused in geographically separated cells. When a mobile user moves from one cell to another, their phone is automatically "handed off" to the new cell's antenna, and assigned a new set of frequencies, and subsequently communicates with this antenna. This background handoff process is transparent to the user and can occur in the middle of a phone call without any service interruption. Each cell phone has an automated full duplex digital transceiver and communicates with the cell antenna over two digital radio channels in the UHF or microwave band, one for each direction of the bidirectional conversation, plus a control channel which handles registering the phone with the network, dialing, and the handoff process.

Typically a cell tower is located at the edge of one or more cells and covers multiple cells using directional antennas. A common geometry is to locate the cell site at the intersection of three adjacent cells, with three antennas at 120° angles each covering one cell. The type of antenna used for cellular base stations (vertical white rectangles in pictures), called a sector antenna, usually consists of a vertical collinear array of dipoles. It has a flat fan-shaped radiation pattern, which is tilted slightly down to cover the cell area without radiating at higher angles into further off cells which reuse the same frequencies. The elevation angle of the antenna must be carefully adjusted, so the beam covers the entire cell without radiating too far. In modern sector antennas beam tilt can usually be adjusted electronically, to avoid the necessity of a lineman climbing the tower to mechanically tilt the antenna when adjustment is needed.

Operation

Range

The working range of a cell site (the range which mobile devices connects reliably to the cell site) is not a fixed figure. It will depend on a number of factors, including, but not limited to:

Generally, in areas where there are enough cell sites to cover a wide area, the range of each one will be set to:

In practice, cell sites are grouped in areas of high population density, with the most potential users. Cell phone traffic through a single site is limited by the base station's capacity; there is a finite number of calls or data traffic that a base station can handle at once. This capacity limitation is commonly the factor that determines the spacing of cell mast sites. In suburban areas, masts are commonly spaced 1–2 miles (2–3 km) apart and in dense urban areas, masts may be as close as ¼-½ mile (400–800 m) apart. [5]

The maximum range of a mast (where it is not limited by interference with other masts nearby) depends on the same considerations. In any case the limiting factor is the ability of a low-powered personal cell phone to transmit back to the mast. As a rough guide, based on a tall mast and flat terrain, it may be possible to get between 50 and 70 km (30–45 miles). When the terrain is hilly, the maximum distance can vary from as little as 5 kilometres (3.1 mi) to 8 kilometres (5.0 mi) due to encroachment of intermediate objects into the wide center fresnel zone of the signal. [6] Depending on terrain and other circumstances, a GSM Tower can replace between 2 and 50 miles (80 km) of cabling for fixed wireless networks. [7] In addition, some technologies, such as GSM, have an additional absolute maximum range of 35 kilometres (22 mi), which is imposed by technical limitations. CDMA and IDEN have no such limit defined by timing.

Practical Example of Range

  • 3G/4G/5G (FR1) Mobile base station tower: it is technically possible to cover up to 50 km-150 km. (Macrocell) [8]
  • 5G (FR2) Mobile base station: the distances between the 5G base-station is about 250–300 m, due to the use of millimetre waves. [9]

Channel reuse

The concept of "maximum" range is misleading in a cellular network. Cellular networks are designed to support many conversations with a limited number of radio channels (slices of radio frequency spectrum necessary to make one conversation) that are licensed to an operator of a cellular service. To overcome this limitation, it is necessary to repeat and reuse the same channels at different locations. Just as a car radio changes from one local station to a completely different local station with the same frequency when traveling to another city, the same radio channel gets reused on a cell mast only a few miles away. To do this, the signal of a cell mast is intentionally kept at low power and in many cases tilted downward to limit its reach. This allows covering an area small enough not to have to support more conversations than the available channels can carry. Due to the sectorized arrangement of antennas on a tower, it is possible to vary the strength and angle for each sector depending on the coverage from other towers in the area.

Signal limiting factor

A cellphone may not work at times because it is too far from a mast, or because the phone is in a location where cell phone signals are attenuated by thick building walls, hills, or other structures. The signals do not need a clear line of sight but greater radio interference will degrade or eliminate reception. When many people try to use the cell mast at the same time, e.g. during a traffic jam or a sports event, then there will be a signal on the phone display but it is blocked from starting a new connection. The other limiting factor for cell phones is the ability to send a signal from its low powered battery to the cell site. Some cellphones perform better than others under low power or low battery, typically due to the ability to send a good signal from the phone to the mast.

The base station controller (a central computer that specializes in making phone connections) and the intelligence of the cellphone keeps track of and allows the phone to switch from one mast to the next during conversation. As the user moves towards a mast it picks the strongest signal and releases the mast from which the signal has become weaker; that channel on that mast becomes available to another user.

Geolocation

Cellular geolocation is less precise than by GPS, but it is available to devices that do not have GPS receivers and where the GPS is not available. The precision of this system varies and is highest where advanced forward link methods are possible and is lowest where only a single cell site can be reached, in which case the location is only known to be within the coverage of that site.

An advanced forward link is where a device is within range of at least three cell sites and where the carrier has implemented timing system use.

Another method is using angle of arrival (AoA) and it occurs when the device is in range of at least two cell sites, produces intermediate precision. Assisted GPS uses both satellite and cell phone signals.

In the United States, for emergency calling service using location data (locally called "Enhanced 911"), it was required that at least 95% of cellular phones in use on 31 December 2005 support such service. Many carriers missed this deadline and were fined by the Federal Communications Commission. [10]

Radio power and health

The Federal Communications Commission, says:

"Measurement data obtained from various sources have consistently indicated that 'worst-case' ground-level power densities near typical cellular towers are on the order of 1 µW/cm² (or 10 mW/m²) or less (usually significantly less)." [11]

Cell phones, cell towers, wi-fi, smart meters, DECT phones, cordless phones, baby monitors and other wireless devices all emit non-ionizing radio frequencies, which the World Health Organization (WHO) has classified as a "potential" carcinogen, [12] although according to the National Cancer Institute "No mechanism by which ELF-EMFs or radiofrequency radiation could cause cancer has been identified." [13]

Temporary sites

Although cell antennas are normally attached to permanent structures, carriers also maintain fleets of vehicles, called cells-on-wheels (COWs), that serve as temporary cell sites. A generator may be included for use where network electrical power is not available, and the system may have a wireless backhaul link allowing use where a wired link is not available.

COWs are also used at permanent cell sites—as temporary replacements for damaged equipment, during planned outages, and to augment capacity such as during conventions.

Cell on wheels (COW) Cell on wheels.jpg
Cell on wheels (COW)

Employment

Cell site workers are called tower climbers or transmission tower workers. Transmission tower workers often work at heights of up to 1,500 feet (450 m), performing maintenance and repair work for cellular phone and other wireless communications companies.

Spy agency setup

According to documents leaked to Der Spiegel, the NSA sells a $40,000 "active GSM base station" to be used as a tool to mimic a mobile phone tower and thus monitor cell phones. [14]

In November 2014, the Wall Street Journal reported that the Technical Operations Group of the U.S. Marshals utilizes spy devices, known as "dirtboxes", to mimic powerful cell tower signals. Such devices are designed to cause mobile phones to switch over to the tower, as it is the strongest signal within reach. The devices are placed on airplanes to effectively create a "dragnet", gathering data about phones as the planes travel above populated areas. [15] [16]

Off-grid systems

An off-grid cell site is not connected to the public electrical grid. Usually the system is off-the-grid because of difficult access or lack of infrastructure. Fuel cell or other backup power systems are added to critical cell sites to provide emergency power. More sites use internal-combustion-engine-driven generator sets. [17] [18] However, being less efficient than public power, they increase operating expense and are a source of pollution (atmospheric, acoustic, etc.) and some are in areas protected by environment and landscape conservation.

Renewable sources, such as solar power and wind power [19] may be available where cell sites are placed. They can be backed up by a fuel generator system which allows the cell site to work when the renewable sources are not enough. One such energy production system consists of:

Electrical energy from intermittent sources is stored in secondary batteries which are usually designed to have an average of 5 days of self-sufficiency, to allow time for maintenance personnel to arrive at site when a repair is needed.

The renewable energy systems supply electrical power when available. The fuel cells are activated only when the natural sources are not enough to supply the energy the system needs. The emergency power supply (the fuel cells) is designed to last an average of 10 days. In this way the structure is completely self-sufficient: this enables the maintenance team to pay only few visits to the site, since it is usually hard to get to.

Camouflage

Camouflaged monopole, called "monopalm", in Tucson, Arizona PalmCellTower.jpg
Camouflaged monopole, called "monopalm", in Tucson, Arizona

There is often local opposition to new masts for reasons of safety and appearance. The latter is sometimes tackled by disguising the mast as something else, such as a flag pole, street lamp, or a tree (e.g. palm trees, pine trees, cypress) or rooftop structures or urban features such as chimneys or panels.

These concealed cell sites can distinguish themselves by foliage shape and bark type. The foliage of all these antennas is composed of leaves made of plastic material accurately designed, taking into consideration quantity, shape and array suitable to completely conceal the antennas and all accessory parts in a natural manner. The materials used guarantee absolute radio-electric transparency and resistance to UVA rays. Nicknames include "monopalm" for a monopole disguised as a palm tree or "Pseudopinus telephoneyensis" for a mast disguised as a pine tree. [20] In monopoles, the directional antennas are sometimes hidden in a plastic housing near the top of the pole so that the crossbars can be eliminated.

An antenna colored to blend in with its host building, in Sopot, Poland BTS NodeB antenna Sopot (cropped).jpg
An antenna colored to blend in with its host building, in Sopot, Poland

Rooftop structures such as concealment chimneys or panels, 6 to 12 meters high, may conceal one or more mobile telephone operators on the same station. Roofmask panels can be fixed to existing rooftop structures, restyling them quickly and cheaply.

Mobile telephone base stations are becoming a contemporary symbol, connected and intertwining with material and immaterial networks. Telestyles are architecturally blended cell towers, the result of cooperation with designers and architects.

Miniature

Researchers at Alcatel-Lucent have developed a cell site called lightRadio that fits in the palm of hand. It is the size of a Rubik's cube. It is capable of relaying 2G, 3G and 4G signals. They are more energy efficient and deliver broadband more efficiently than current cell sites. They could be used in very populated urban areas to make room for more radio space. [21]

See also

Related Research Articles

Advanced Mobile Phone System Analog mobile phone system standard

Advanced Mobile Phone System (AMPS) was an analog mobile phone system standard originally developed by Bell Labs and later modified in a cooperative effort between Bell Labs and Motorola. It was officially introduced in the Americas on October 13, 1983, Israel in 1986, Australia in 1987, Singapore in 1988, and Pakistan in 1990. It was the primary analog mobile phone system in North America through the 1980s and into the 2000s. As of February 18, 2008, carriers in the United States were no longer required to support AMPS and companies such as AT&T and Verizon Communications have discontinued this service permanently. AMPS was discontinued in Australia in September 2000, in Pakistan by October 2004, in Israel by January 2010, and Brazil by 2010.

GSM Standard to describe protocols for second generation digital cellular networks used by mobile phones

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. It was first deployed in Finland in December 1991. By the mid-2010s, it became a global standard for mobile communications achieving over 90% market share, and operating in over 193 countries and territories.

Time-division multiple access channel access method for shared medium networks

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. TDMA was first used in satellite communication systems by Western Union in its Westar 3 communications satellite in 1979. It is now used extensively in satellite communications, combat-net radio systems, and passive optical network (PON) networks for upstream traffic from premises to the operator. For usage of Dynamic TDMA packet mode communication, see below.

Wireless network any network at least partly not connected by physical cables of any kind

A wireless network is a computer network that uses wireless data connections between network nodes.

Wireless transfer of information or power that does not require the use of physical wires

Wireless communication is the electromagnetic transfer of information between two or more points that are not connected by an electrical conductor. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications include the use of other electromagnetic wireless technologies, such as light, magnetic, or electric fields or the use of sound.

Space-division multiple access (SDMA) is a channel access method based on creating parallel spatial pipes using advanced antenna technology next to higher capacity pipes through spatial multiplexing and/or diversity, by which it is able to offer superior performance in radio multiple access communication systems. In traditional mobile cellular network systems, the base station has no information on the position of the mobile units within the cell and radiates the signal in all directions within the cell in order to provide radio coverage. This method results in wasting power on transmissions when there are no mobile units to reach, in addition to causing interference for adjacent cells using the same frequency, so called co-channel cells. Likewise, in reception, the antenna receives signals coming from all directions including noise and interference signals. By using smart antenna technology and differing spatial locations of mobile units within the cell, space-division multiple access techniques offer attractive performance enhancements. The radiation pattern of the base station, both in transmission and reception, is adapted to each user to obtain highest gain in the direction of that user. This is often done using phased array techniques.

Base station

Base station is – according to the International Telecommunication Union's (ITU) Radio Regulations (RR) – a "land station in the land mobile service."

Base station subsystem The section of a cellular telephone network responsible for handling traffic and signaling

The base station subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the network switching subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, transmission and reception over the air interface and many other tasks related to the radio network.

A base transceiver station (BTS) is a piece of equipment that facilitates wireless communication between user equipment (UE) and a network. UEs are devices like mobile phones (handsets), WLL phones, computers with wireless Internet connectivity. The network can be that of any of the wireless communication technologies like GSM, CDMA, wireless local loop, Wi-Fi, WiMAX or other wide area network (WAN) technology.

Cellular network communication network where the last link is wireless

A cellular network or mobile network is a communication network where the last link is wireless. The network is distributed over land areas called "cells", each served by at least one fixed-location transceiver, but more normally, three cell sites or base transceiver stations. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighbouring cells, to avoid interference and provide guaranteed service quality within each cell.

Mobile telephony collective term for the operation of mobile telephone devices

Mobile telephony is the provision of telephone services to phones which may move around freely rather than stay fixed in one location. Telephony is supposed to specifically point to a voice-only service or connection, though sometimes the line may blur.

History of mobile phones covers mobile communication devices which connect wirelessly to the public switched telephone network

The history of mobile phones covers mobile communication devices that connect wirelessly to the public switched telephone network.

Mobile phone tracking ascertaining of the position of a mobile phone

Mobile phone tracking is a process for identifying the location of a mobile phone, whether stationary or moving. Localization may be effected by a number of technologies, such as using multilateration of radio signals between (several) cell towers of the network and the phone, or simply using GPS. To locate a mobile phone using multilateration of radio signals, it must emit at least the idle signal to contact the next nearby antenna tower, but the process does not require an active call. The Global System for Mobile Communications (GSM) is based on the phone's signal strength to nearby antenna masts.

Node B

Node B is the telecommunications node in particular mobile communication networks, namely those that adhere to the UMTS standard. The Node B provides the connection between mobile phones (UEs) and the wider telephone network. UMTS is the dominating 3G standard.

A cellular repeater is a type of bi-directional amplifier used to improve cell phone reception. A cellular repeater system commonly consists of a donor antenna that receives and transmits signal from nearby cell towers, coaxial cables, a signal amplifier, and an indoor rebroadcast antenna.

This is a comparison of standards of mobile phones. A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1979 and the early to mid-1980s.

Mobile phone signal

A mobile phone signal is the signal strength received by a mobile phone from a cellular network. Depending on various factors, such as proximity to a tower, any obstructions such as buildings or trees, etc. this signal strength will vary. Most mobile devices use a set of bars of increasing height to display the approximate strength of this received signal to the mobile phone user. Traditionally five bars are used.

Radio Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications.

Remote radio head

A remote radio head (RRH), also called a remote radio unit (RRU) in wireless networks, is a remote radio transceiver that connects to an operator radio control panel via electrical or wireless interface. When used to describe aircraft radio cockpit radio systems, the control panel is often called the radio head.

RF CMOS is a metal–oxide–semiconductor (MOS) integrated circuit (IC) technology that integrates radio-frequency (RF), analog and digital electronics on a mixed-signal CMOS RF circuit chip. It is widely used in modern wireless telecommunications, such as cellular networks, Bluetooth, Wi-Fi, GPS receivers, broadcasting, vehicular communication systems, and the radio transceivers in all modern mobile phones and wireless networking devices. RF CMOS technology was pioneered by Pakistani engineer Asad Ali Abidi at UCLA during the late 1980s to early 1990s, and helped bring about the wireless revolution with the introduction of digital signal processing in wireless communications.

References

  1. "Learn about what is on a cell tower: Without the Cat" . Retrieved 9 December 2010.
  2. Rubenstein, BY Carin (11 July 2004). "The Girded, The Bland And the Prickly" via NYTimes.com.
  3. Buckley, Cara; Richtel, Matt (20 August 2010). "Good Cellphone Service Comes at a Price" via NYTimes.com.
  4. J. Andrews, A. Gohsh (2007). Fundamentals of WiMAX, p. 43
  5. "Understanding Small-Cell Wireless Backhaul". Electronic Design. 3 April 2014.
  6. Frequently Asked PCS Questions undated, URL retrieved 14 August 2007. Archived 9 May 2006 at the Wayback Machine
  7. NTIA Seeks Input on Broadband Stimulus Money undated, URL retrieved 3 March 2009. Archived 22 November 2009 at the Wayback Machine
  8. "Mobile Phone Base Stations, How do mobile base stations work, Mobile Base Stations in Australia, Cell Tower, Mobile Phone Tower". mobilenetworkguide.com.au.
  9. "Full Page Reload". IEEE Spectrum: Technology, Engineering, and Science News.
  10. "Sprint, Alltel, USC fined for missed e911 deadline". FierceWireless.
  11. Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields Fourth Edition. FCC. August 1999. Page 21. Retrieved 7 April 2013
  12. Hardell, Lennart (21 June 2017). "World Health Organization, radiofrequency radiation and health—a hard nut to crack". International Journal of Oncology. 51 (August 2017): 405–413. doi:10.3892/ijo.2017.4046. PMC   5504984 . PMID   28656257.
  13. "Electromagnetic Fields and Cancer". National Cancer Institute. 7 January 2019.
  14. Appelbaum, Jacob; Horchert, Judith; Stöcker, Christian (29 December 2013). "Shopping for Spy Gear: Catalog Advertises NSA Toolbox" via Spiegel Online.
  15. Devlin Barrett (13 November 2014). "Americans' Cellphones Targeted in Secret U.S. Spy Program: Devices on Planes that Mimic Cellphone Towers Used to Target Criminals, but Also Sift Through Thousands of Other Phones". The Wall Street Journal . Retrieved 14 November 2014.
  16. Kate Knibbs (13 November 2014). "WSJ: A Secret U.S. Spy Program Is Using Planes to Target Cell Phones". Gizmodo. Retrieved 14 November 2014.
  17. Ballard fuel cells to power telecom backup power units for motorola Archived 6 July 2011 at the Wayback Machine
  18. "India telecoms to get fuel cell power". Archived from the original on 26 November 2010.
  19. Such as Wind-it tower
  20. "Archived copy" (PDF). Archived from the original (PDF) on 26 July 2011. Retrieved 12 October 2010.CS1 maint: archived copy as title (link)
  21. The tiny cube that could cut your cell phone bill, CNN Money, 21 March 2011, David Goldman