DECT-2020

Last updated

DECT-2020, also called NR+, is a radio standard by ETSI for the DECT bands worldwide. [1] [2] The standard was designed to meet a subset of the ITU IMT-2020 5G requirements that are applicable to IOT and Industrial internet of things. [3] DECT-2020 is compliant with the requirements for Ultra Reliable Low Latency Communications URLLC and massive Machine Type Communication (mMTC) of IMT-2020.

Contents

DECT-2020 NR has new capabilities [4] compared to DECT and DECT Evolution:

The DECT-2020 standard has been designed to co-exist in the DECT radio band with existing DECT deployments. It uses the same Time Division slot timing and Frequency Division center frequencies and uses pre-transmit scanning to minimize co-channel interference.

Applications

DECT NR+ (called DECT-2020 NR in ETSI) primarily focuses on addressing the needs of local area deployments for two use case areas: massive Machine Type Communication (mMTC) and Ultra-Reliable Low Latency Communication (URLLC) as defined for 5G networks application areas. The release 1 of the standard targets several applications within these use cases, including Smart Metering and Smart grid, Industrial internet of things, Building automation, and Professional audio [5]

DECT NR+ decentralized and autonomous networking capability was specifically designed for Metering and Smart Grid applications, and mesh networking application in general. The technology can scale up to millions of devices within a single network. [6] [7]

The low latency communications URLLC is suitable for various use cases of Industry 4.0. These applications encompass robotics, monitoring and predictive maintenance and others. NR+ supports these use cases through its low latency and high reliability, dedicated frequency band, and high density and scalability [8]

Regarding Professional Audio and PMSE applications, DECT NR+ offers the necessary features of low latency and high reliability. This makes it suitable for applications requiring real-time audio transmission and performance as required by professional audio systems. [8]

Technology

DECT NR+ technology is specified by DECT committee in the ETSI. The specifications for NR+ are called DECT-2020 in ETSI.

Co-existence with classic DECT

An important design criteria for NR+ was to co-exist with Classic DECT communications. This allows NR+ to use the DECT reserved radio bands [9] 1, 2 and 9, in the frequency range of 1880-1930 MHz. DECT reserved radio bands are license free, but devices need to pass certification ensuring correct operation on the bands. [10]

Topologies

NR+ supports 3 topologies [11]

  1. Mesh network
  2. Star network
  3. Point-to-Point Link

NR+ Mesh network is based on a clustered tree [12] In all these network topologies the NR+ assumes that a device, called FT node, manages the radio resource usage in the cluster or link it controls.

The Point-to-point and star networks enable dedicated links, with reserved capacity for scheduled transmissions. [13] A leaf node, called PT node in NR+, can ask for certain resource reservation for it when it associates to the FT node. As this reservation can be done only for the next link, Mesh networking with multiple relaying links in the path relies on random access channel usage [12] where the devices needing to communicate compete for the access window defined by the FT node. This increases the communication delays in Mesh.

Mesh operation

The benefits of mesh networking network topology and operation are robustness for changes or errors and coverage extension. [12]

Robustness is the result of the autonomous decisions of the devices. There is no single point of failure. NR+ also supports having multiple gateway devices, called Sinks, connecting the NR+ mesh network to Internet. All the devices autonomously measure parent FT device's radio link quality, and can switch to another FT device if a better link or shorter route to sink is available. Similarly, if a parent device is not acknowledging messages, or is not sending the periodic beacon advertisement, a device will look for alternative parents. The mesh network heals itself in error situations and changes in the network.

Each device added to the network may act as a FT device, extending the network coverage. The sinks are configured first and start advertising the network in beacon messages. Devices scan radio channels, and associate to the parent they hear advertising the network and cluster. Associated devices can act as FT devices, and extend the network by selecting a channel with least traffic and start forwarding the network advertisement beacons. This extends the coverage for each FT device that joins the network.

NR+ protocol layers

Overall description of the technology and protocol layers are provided in the DECT-2020 New Radio (NR); Part 1: Overview; Release 1 specification [11]

Convergence Layer

Convergence layer [14] offers identification and multiplexing of the traffic of different applications and services using the NR+ communications. CVG operates end-to-end between the NR+ network nodes. It is analogous to ports in UDP or TCP protocol. Like UDP and TCP, CVG offers both unreliable and reliable messaging services, datagram or flow control service and segmentation and reassembly for messages.

Convergence layer provides security with encryption and integrity protection of messages end-to-end in the NR+ network.

Data link control layer [14] is the message routing service for NR+ networks. Routing decisions are done in each device in the network, there is no central routing table. DLC routing operates in 3 modes:

  1. Uplink routing, to sink device: each node forwards message to parent
  2. Downlink routing: from sink to FT or PT device in the network. Messages are forwarded to each FT device in the network until the destination device's parent device can deliver the message to the destination device.
  3. Horizontal routing, between devices in the network with hop limited flooding

Unicast, multicast and broadcast routing is supported.

As the NR+ network has internal routing and addresses it can operate without Internet Protocol routing services. Internet protocols can be carried in NR+ networks.

Medium Access Control layer

Medium access control [13] main services are radio resource control and data transfer.

Radio resource control ensures the #Co-Existence with Classic DECT. To do this, FT devices periodically scan the radio channel they operate on, and map busy time slots measured to be in use assuming it is an on-going Classic DECT connection. [13] FT devices allocate the channel access time for the child devices on free time slots, preserving error free communications on the busy slots time slots. Channel access allocations are sent in beacon messages to all devices in the cluster.

MAC layer also provides link scope encryption and integrity protection.

Physical Layer

Physical layer [9] [15] uses Cyclic prefix version of OFDM as the core technology. The technologies provide well-known behaviour in challenging radio conditions.

PHY layer provides error detection to higher layers, Forward error correction and HARQ with soft combining. Received messages with errors are combined with re-transmissions, making it possible to decode correct message even if the re-transmission too contained errors.

NR+ radio can operate on frequencies below 6 GHz. [9] Standard defined speeds are up to gigabits per second. [15] Radio implementations of course vary in the speeds achieved and frequencies supported.

Security

NR+ defines message encryption and integrity protection in both CVG and MAC layers. Encryption and integrity protection use own separate keys on the 2 layers. The encryption is security is based on AES with key length of 128 bits. [16] Integrity protection is based on same algorithm and key length [17] NR+ does not define the key distribution mechanism "the number of key-pairs and the key distribution is outside of the scope of the present document" [14] although it has been studied [18]

Future DECT-2020 work in ETSI

The DECT technical committee has started specification work for Release 2 of the standard in June 2023.

Related Research Articles

<span class="mw-page-title-main">Digital enhanced cordless telecommunications</span> ITU Standard for cordless telephone systems

Digital Enhanced Cordless Telecommunications (DECT) is a cordless telephony standard maintained by ETSI. It originated in Europe, where it is the common standard, replacing earlier standards, such as CT1 and CT2. Since the DECT-2020 standard onwards, it also includes IoT communication.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). Networks and mobile devices with GPRS started to roll out around the year 2001. At the time of introduction it offered for the first time seamless mobile data transmission using packet data for an "always-on" connection, providing improved Internet access for web, email, WAP services, and Multimedia Messaging Service (MMS).

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Specialty Networks (WSN) standards. The working group was formerly known as Working Group for Wireless Personal Area Networks.

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low-data-rate, and close proximity wireless ad hoc network.

<span class="mw-page-title-main">Power-line communication</span> Type of network

Power-line communication (PLC) is the carrying of data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers. The line that does so is known as a power-line carrier.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

<span class="mw-page-title-main">Orthogonal frequency-division multiple access</span> Multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

<span class="mw-page-title-main">Z-Wave</span> Wireless standard for intelligent building networks

Z-Wave is a wireless communications protocol used primarily for residential and commercial building automation. It is a mesh network using low-energy radio waves to communicate from device to device, allowing for wireless control of smart home devices, such as smart lights, security systems, thermostats, sensors, smart door locks, and garage door openers. The Z-Wave brand and technology are owned by Silicon Labs. Over 300 companies involved in this technology are gathered within the Z-Wave Alliance.

IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE), a vehicular communication system. It defines enhancements to 802.11 required to support intelligent transportation systems (ITS) applications. This includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure, so called vehicle-to-everything (V2X) communication, in the licensed ITS band of 5.9 GHz (5.85–5.925 GHz). IEEE 1609 is a higher layer standard based on the IEEE 802.11p. It is also the basis of a European standard for vehicular communication known as ETSI ITS-G5.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

Gigabit Home Networking (G.hn) is a specification for wired home networking that supports speeds up to 2 Gbit/s and operates over four types of legacy wires: telephone wiring, coaxial cables, power lines and plastic optical fiber. Some benefits of a multi-wire standard are lower equipment development costs and lower deployment costs for service providers.

<span class="mw-page-title-main">5G</span> Broadband cellular network standard

In telecommunications, 5G is the fifth-generation technology standard for cellular networks, which cellular phone companies began deploying worldwide in 2019, and is the successor to 4G technology that provides connectivity to most current mobile phones.

Nivis, LLC is a company that designs and manufactures wireless sensor networks for smart grid and industrial process automation. Target applications include process monitoring, environmental monitoring, power management, security, and the internet of things. The company is headquartered in Atlanta, Georgia, with additional offices in Romania, where much of its technology is developed. The company's product portfolio consists of standards-based wireless communications systems, including radio nodes, routers, management software and a software stack for native communications. Nivis hardware is operated by open source software.

DECT Ultra Low Energy is a wireless communication standard used to design wireless sensor and actuator networks for smart home applications. DECT ULE originated from the DECT and NG-DECT (Cat-iq) technology. DECT ULE devices are used in home automation, home security, and climate control.

5G NR is a radio access technology (RAT) developed by the 3rd Generation Partnership Project (3GPP) for the 5G mobile network. It was designed to be the global standard for the air interface of 5G networks. It is based on orthogonal frequency-division multiplexing (OFDM), as is the 4G long-term evolution (LTE) standard.

References

  1. Martin Rowe (2023-08-16). ""The first non-cellular 5G standard: DECT NR+"". 5G Technology World (WTWH Media LLC). Retrieved 2023-11-21.
  2. ""DECT-2020: The first global non-cellular 5G technology approved"". Hiddenwires (IML Group plc). 2022-10-05. Retrieved 2023-11-08.
  3. Dan Shey (2023-02-06). ""DECT-2020 New Radio (NR) and IoT: An Overview"". New Equipment Digest (Endeavor Business Media). Retrieved 2023-11-03.
  4. Mark Patrick, Caroline Hayes (2023-05-24). ""A guide to DECT NR+ – why the world needs a non-cellular 5G wireless protocol"". Electronics Weekly. Retrieved 2023-11-21.
  5. Perez-Guirao, M. Dolores; Weisshaupt, Thomas; Wilzeck, Andreas (2022-05-18). "DECT NR+:Unveiling the Essentials of a new non-cellular 5G Standard for Verticals". Mobile Communication - Technologies and Applications; 26th ITG-Symposium. IEEE/VDE. ISBN   978-3-8007-5873-9.
  6. Kovalchukov, Roman; Moltchanov, Dmitri; Pirskanen, Juho; Säe, Joonas; Numminen, Jussi; Koucheryavy, Yevgeni; Valkama, Mikko (2022-06-01). ""DECT-2020 New Radio: The Next Step toward 5G Massive Machine-Type Communications"". IEEE Communications Magazine. 60 (6): 58–64. doi:10.1109/MCOM.001.2100375. S2CID   231632052 . Retrieved 2023-11-08.
  7. Anttonen, Antti; Karhula, Pekka; Lasanen, Mika; Majanen, Mikko (2021). "Enabling Massive Machine Type Communications with DECT-2020 Standard: A System-Level Performance Study" (Report). VTT Technical Research Centre of Finland. Retrieved 2023-11-03.
  8. 1 2 ""DECT-2020 NR Introduction"". ETSI. Retrieved 2023-11-03.
  9. 1 2 3 "DECT-2020 New Radio (NR); Part 2: Radio reception and transmission requirements; Release 1" (PDF). ETSI. Retrieved 2023-07-05.
  10. "Digital Enhanced Cordless Telecommunications (DECT); Harmonised Standard for access to radio spectrum; Part 2: DECT-2020 NR" (PDF). ETSI. Retrieved 2023-07-05.
  11. 1 2 "DECT-2020 New Radio (NR); Part 1: Overview; Release 1" (PDF). ETSI. Retrieved 2023-07-05.
  12. 1 2 3 103 636-1 chapter 5.3. Mesh network topology
  13. 1 2 3 "DECT-2020 New Radio (NR); Part 4: MAC layer; Release 1" (PDF). ETSI. Retrieved 2023-07-05.
  14. 1 2 3 "DECT-2020 New Radio (NR); Part 5: DLC and Convergence layers; Release 1" (PDF). ETSI. Retrieved 2023-07-06.
  15. 1 2 "DECT-2020 New Radio (NR); Part 3: Physical layer; Release 1" (PDF). ETSI. Retrieved 2023-07-06.
  16. "FIPS PUB 197" (PDF). National Institute of Standards and Technology. Archived (PDF) from the original on 31 May 2023. Retrieved 2023-07-06.
  17. Dworkin, M. J. (2016). "NiST 800-38B". National Institute of Standards and Technology. doi:10.6028/NIST.SP.800-38B. Archived from the original on 18 May 2023. Retrieved 2023-07-06.
  18. "Digital Enhanced Cordless Telecommunications (DECT); DECT-2020 New Radio (NR) interface; Study on Security Architecture" (PDF). ETSI. Archived (PDF) from the original on 30 November 2021. Retrieved 2023-07-06.