Fiber to the x

Last updated

A schematic illustrating how FTTX (Node, Curb, Building, Home) architectures vary with regard to the distance between the optical fiber and the end user. The building on the left is the central office; the building on the right is one of the buildings served by the central office. Dotted rectangles represent separate living or office spaces within the same building. FTTX.svg
A schematic illustrating how FTTX (Node, Curb, Building, Home) architectures vary with regard to the distance between the optical fiber and the end user. The building on the left is the central office; the building on the right is one of the buildings served by the central office. Dotted rectangles represent separate living or office spaces within the same building.

Fiber to the x (FTTX; also spelled "fibre") or fiber in the loop is a generic term for any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications. As fiber optic cables are able to carry much more data than copper cables, especially over long distances, copper telephone networks built in the 20th century are being replaced by fiber. [1]

Contents

FTTX is a generalization for several configurations of fiber deployment, arranged into two groups: FTTP/FTTH/FTTB (fiber laid all the way to the premises/home/building) and FTTC/N (fiber laid to the cabinet/node, with copper wires completing the connection).

Residential areas already served by balanced pair distribution plant call for a trade-off between cost and capacity. The closer the fiber head, the higher the cost of construction and the higher the channel capacity. In places not served by metallic facilities, little cost is saved by not running fiber to the home.

Fiber to the x is the key method used to drive next-generation access (NGA), which describes a significant upgrade to the broadband available by making a step change in speed and quality of the service. This is typically thought of as asymmetrical with a download speed of 24 Mbit/s plus and a fast upload speed. [2] Ofcom have defined super-fast broadband as "broadband products that provide a maximum download speed that is greater than 24 Mbit/s this threshold is commonly considered to be the maximum speed that can be supported on current generation (copper-based) networks." [3]

A similar network called a hybrid fiber-coaxial (HFC) network is used by cable television operators but is usually not synonymous with "fiber In the loop", although similar advanced services are provided by the HFC networks. Fixed wireless and mobile wireless technologies such as Wi-Fi, WiMAX and 3GPP Long Term Evolution (LTE) are an alternative for providing Internet access.

Definitions

The telecommunications industry differentiates between several distinct FTTX configurations. The terms in most widespread use today are:

To promote consistency, especially when comparing FTTH penetration rates between countries, the three FTTH Councils of Europe, North America, and Asia-Pacific agreed upon definitions for FTTH and FTTB in 2006, [10] with an update in 2009, [11] 2011 [12] and another in 2015. [13] The FTTH Councils do not have formal definitions for FTTC and FTTN.

Benefits

While fiber optic cables can carry data at high speeds over long distances, copper cables used in traditional telephone lines and ADSL cannot. For example, the common form of Gigabit Ethernet (1 Gbit/s) runs over relatively economical category 5e, category 6 or 6A unshielded twisted-pair copper cabling but only to 100 m (300 ft). However, 1 Gbit/s Ethernet over fiber can easily reach tens of kilometers. Therefore, FTTP has been selected by every major communications provider in the world to carry data over long 1 Gbit/s symmetrical connections directly to consumer homes. FTTP configurations that bring fiber directly into the building can offer the highest speeds since the remaining segments can use standard Ethernet or coaxial cable.

Fiber is often said to be "future-proof" because the data rate of the connection is usually limited by the terminal equipment rather than the fiber, permitting substantial speed improvements by equipment upgrades before the fiber itself must be upgraded. Still, the type and length of employed fibers chosen, e.g. multimode vs. single-mode, are critical for applicability for future connections of over 1 Gbit/s.

With the rising popularity of high-definition, on-demand video streaming applications and devices such as YouTube, Netflix, Roku, and Facebook LIVE, the demand for reliable bandwidth is crucial as more and more people begin to utilize these services. [14]

FTTC (where fiber transitions to copper in a street cabinet) is generally too far from the users for standard Ethernet configurations over existing copper cabling. They generally use very-high-bit-rate digital subscriber line (VDSL) at downstream rates of 80 Mbit/s, but this falls extremely quickly when the distance exceeds 100 m (300 ft).

Fiber to the premises

Fiber to the premises (FTTP) is a form of fiber-optic communication delivery in which an optical fiber is run in an optical distribution network from the central office all the way to the premises occupied by the subscriber. The term "FTTP" has become ambiguous and may also refer to FTTC where the fiber terminates at a utility pole without reaching the premises.

Fiber-optic cable being pulled underneath the streets of New York City Fiber-Optic Installation in New York City.jpg
Fiber-optic cable being pulled underneath the streets of New York City
An optical fiber jack (cover removed) in a residence with FTTH service Fibre Optic Jack.jpg
An optical fiber jack (cover removed) in a residence with FTTH service

Fiber to the premises can be categorized according to where the optical fiber ends:

An apartment building may provide an example of the distinction between FTTH and FTTB. If a fiber is run to a panel inside each subscriber's apartment unit, it is FTTH. If instead, the fiber goes only as far as the apartment building's shared electrical room (either only to the ground floor or to each floor), it is FTTB.


Fibre-to-the-home cable.
FTTP Dismantled.jpg
FTTP XS.jpg
This cable is outdoor-grade. Approximate diameters: Outer sheath: 5 mm, outer white paper wrapper: ⌀2.5 mm, inner white plastic sheath: ⌀890 μm, blue sheath: ⌀250 μm, optical fiber: ⌀150 μm

Fiber to the curb/cabinet/node

Inside an FTTN or FTTC fiber cabinet. The left side contains the fiber and a DSLAM, and the right side contains the copper and punch down blocks for a form of DSL such as VDSL Inside fibre cab (12945979503).jpg
Inside an FTTN or FTTC fiber cabinet. The left side contains the fiber and a DSLAM, and the right side contains the copper and punch down blocks for a form of DSL such as VDSL

Fiber to the curb/cabinet (FTTC) is a telecommunications system based on fiber-optic cables run to a platform that serves several customers. Each of these customers has a connection to this platform via coaxial cable or twisted pair. The "curb" is an abstraction and can just as easily mean a pole-mounted device or communications closet or shed. Typically any system terminating fiber within 300 m (1,000 ft) of the customer premises equipment would be described as FTTC. [15]

Fiber to the node or neighborhood (FTTN), sometimes identified with and sometimes distinguished from fiber to the cabinet (FTTC), [16] is a telecommunication architecture based on fiber-optic cables run to a cabinet serving a neighborhood. Customers typically connect to this cabinet using traditional coaxial cable or twisted pair wiring. The area served by the cabinet is usually less than one mile in radius and can contain several hundred customers.

FTTN allows delivery of broadband services such as high-speed internet. High-speed communications protocols such as broadband cable access (typically DOCSIS) or some form of digital subscriber line (DSL) are used between the cabinet and the customers. Data rates vary according to the exact protocol used and according to how close the customer is to the cabinet.

Unlike FTTP, FTTN often uses existing coaxial or twisted-pair infrastructure to provide last mile service and is thus less costly to deploy. In the long term, however, its bandwidth potential is limited relative to implementations that bring the fiber still closer to the subscriber.

A variant of this technique for cable television providers is used in a hybrid fiber-coaxial (HFC) system. It is sometimes given the acronym FTTLA (fiber-to-the-last-amplifier) when it replaces analog amplifiers up to the last one before the customer (or neighborhood of customers).

FTTC allows delivery of broadband services such as high-speed internet. Usually, existing wire is used with communications protocols such as broadband cable access (typically DOCSIS) or some form of DSL connecting the curb/cabinet and the customers. In these protocols, the data rates vary according to the exact protocol used and according to how close the customer is to the cabinet.

Where it is feasible to run new cable, both fiber and copper Ethernet are capable of connecting the "curb" with a full 100 Mbit/s or 1 Gbit/s connection. Even using relatively cheap outdoor category 5 copper over hundreds of meters, all Ethernet protocols including power over Ethernet (PoE) are supported[ citation needed ]. Most fixed wireless technologies rely on PoE, including Motorola Canopy, which has low-power radios capable of running on a 12 VDC power supply fed over several tens of meters of cable.

Power line networking deployments also rely on FTTC. Using the IEEE P1901 protocol (or its predecessor HomePlug AV) existing electric service cables move up to 1 Gbit/s from the curb/pole/cabinet into every AC electrical outlet in the home—coverage equivalent to a robust Wi-Fi implementation, with the added advantage of a single cable for power and data.

By avoiding new cable and its cost and liabilities, FTTC costs less to deploy. However, it also has historically had lower bandwidth potential than FTTP. In practice, the relative advantage of fiber depends on the bandwidth available for backhaul, usage-based billing restrictions that prevent full use of last-mile capabilities, and customer premises equipment and maintenance restrictions, and the cost of running fiber that can vary widely with geography and building type.

In the United States and Canada, the largest deployment of FTTC was carried out by BellSouth Telecommunications. With the acquisition of BellSouth by AT&T, deployment of FTTC will end. Future deployments will be based on either FTTN or FTTP. Existing FTTC plant may be removed and replaced with FTTP. [17] Verizon, meanwhile, announced in March 2010 they were winding down Verizon FiOS expansion, concentrating on completing their network in areas that already had FiOS franchises but were not deploying to new areas, [18] suggesting that FTTH was uneconomic beyond these areas.

Verizon also announced (at CES 2010) its entry into the smart home and power utility data management arenas, indicating it was considering using P1901-based FTTC or some other existing-wire approach to reach into homes, and access additional revenues from the secure AES-128 bandwidth required for advanced metering infrastructure. However, the largest 1 Gbit/s deployment in the United States, in Chattanooga, Tennessee, despite being conducted by power utility EPB, [19] was FTTH rather than FTTC, reaching every subscriber in a 600-square-mile area. Monthly pricing of US$350 reflected this generally high cost of deployment. However, Chattanooga EPB has reduced the monthly pricing to US$70/month. [20]

Historically, both telephone and cable companies avoided hybrid networks using several different modes of transport from their point of presence into customer premises. The increased competitive cost pressure, availability of three different existing wire solutions, smart grid deployment requirements (as in Chattanooga), and better hybrid networking tools (with major vendors like Alcatel-Lucent and Qualcomm Atheros, and Wi-Fi solutions for edge networks, IEEE 1905 and IEEE 802.21 protocol efforts and SNMP improvements) all make FTTC deployments more likely in areas uneconomic to serve with FTTP/FTTH. In effect FTTC serves as a halfway measure between fixed wireless and FTTH, with special advantages for smart appliances and electric vehicles that rely on PLC use already.

Deployments

Operators around the world have been rolling out high-speed Internet access networks since the mid-2000s. Some used a network topology known as Active Ethernet Point-to-Point to deliver services from its central office directly into subscribers' homes. Fiber termination was handled by a residential gateway provided by Advanced Digital Broadcast inside a subscriber's home to be shared with other consumer electronics (CE) devices.

Since 2007, Italian access providers Fastweb, [21] Vodafone, and Wind participated in an initiative called Fiber for Italy, with the aim of creating a countrywide fiber-to-the-home network in Italy. The pilot taking place in the Italian capital, Rome, has seen symmetrical bandwidth of 100 Mbit/s. [22] Telecom Italia, which refused to take part in the Fiber for Italy initiative, had an even more ambitious plan to bring fiber-to-the-home and fiber-to-the-business to 138 cities by 2018. [23]

By the end of December 2010, the total number of fiber-to-the-home enabled homes had passed 2.5 million, with more than 348,000 subscribers. [23] [ clarification needed ])

In September 2010, the European Commission published a new "Recommendation for Regulated Access to NGA Networks" along with a list of measures to promote the deployment of fast broadband and next-generation access networks. [24]

Portugal Telecom plans to complete its fiber-to-the-home nationwide roll out by 2020. Currently 200 Mbit/s down, 100 Mbit/s up costs €22 per month. [25]

Between September 2017 and March 2019, the number of European FTTH and FTTB subscribers increased by nearly 16%. By 2025, the total number of premises passed by FTTH and FTTB infrastructure is expected to reach 187 million throughout Europe. [26]

Google Fiber provides speed of up to 8 Gbit/s. [27]

Active Line Access is an evolving standard for the provision of services over FTTP networks in the United Kingdom proposed by the regulator Ofcom and developed by the Network Interoperability Consultative Committee. [28]

FTTS, FTTH and FTTB

Most FTTH deployments follow one of four primary architecture types: centralized split, distributed split, star architecture, or daisy-chaining. Fiber network developers choose architectures based on a variety of factors, such as the physical geography of the local environment, number of anticipated subscribers, and labor force skill. [29]

FTTN and FTTC

FTTC during installation in Germany Utility box, Ribnitz-Damgarten (P1070873).jpg
FTTC during installation in Germany

FTTN/C is seen as an interim step towards full FTTH and in many cases triple-play services delivered using this approach to provide up to around 100 Mbit/s have been proven to grow subscriber numbers and ARPU considerably [30] [31] [32] FTTN/C is currently used by a number of operators, including AT&T in the United States, Germany's Deutsche Telekom, Greece's OTE, Swisscom, TIM in Italy, Proximus in Belgium, nbn™ in Australia, and Canadian operators Telus, Cogeco and Bell Canada.

Optical distribution networks

Direct fiber

The simplest optical distribution network architecture is direct fiber: each fiber leaving the central office goes to exactly one customer. These networks can support a lot of bandwidth, but they cost more because of the fiber and the equipment in the central office. [33]

Direct fiber is generally favored by new entrants and competitive operators. A benefit is that no layer 2 networking technologies are excluded, whether passive optical network (PON), active optical network (AON), or other. Any form of regulatory remedy is possible using this topology. [34]

Shared fiber

More commonly, each fiber leaving the central office is actually shared by many customers. It is not until such a fiber gets relatively close to the customers that it is split into individual customer-specific fibers. AONs and PONs both achieve this split.

Active optical network

Comparison showing how a typical AON (a star network capable of multicasting) handles downstream traffic differently from a typical PON (a star network having multiple splitters housed in the same cabinet) PON vs AON.png
Comparison showing how a typical AON (a star network capable of multicasting) handles downstream traffic differently from a typical PON (a star network having multiple splitters housed in the same cabinet)

AONs rely on electrically powered network equipment to distribute the signal, such as a switch or router. Normally, signals need an optical-electrical-optical transformation in the AON. Each signal leaving the central office is directed only to the customer for whom it is intended.

Incoming signals from the customers avoid colliding at the intersection because the powered equipment there provides buffering. Active Ethernet (a type of Ethernet in the first mile) is a common AON, which uses optical Ethernet switches to distribute the signal, incorporating the customers' premises and the central office into a large switched Ethernet network. Ethernet in the first mile deployments follow a point to point or star network topology and are often based on Fast Ethernet speeds of up to 100 Mbit/s. [35]

Such networks are identical to Ethernet computer networks used in businesses and academic institutions, except that their purpose is to connect homes and buildings to a central office rather than to connect computers and printers within a location. Each switching cabinet can handle up to 1,000 customers, although 400–500 is more typical.

This neighborhood equipment performs layer 2 switching or layer 3 switching and routing, offloading full layer 3 routing to the carrier's central office. The IEEE 802.3ah standard enables service providers to deliver up to 1000 Mbit/s, full-duplex, over one single-mode optical fiber FTTP, depending on the provider.

Passive optical network

A passive optical network (PON) is a point-to-multipoint FTTP network architecture in which unpowered optical splitters are used to enable a single optical fiber to serve up to 128 customers. A PON reduces the fiber and central office equipment required compared with point-to-point architecture. Because of this, and because it needs no powered splitters or other active components from the moment it leaves the ISP's facilities until it reaches the customer, many ISPs prefer this technology. [36]

The downstream signal coming from the central office is broadcast to each customer premises sharing a fiber. Encryption is used to prevent eavesdropping. Upstream signals are combined using a multiple-access protocol, usually time-division multiple access (TDMA).

Ethernet point-to-point

Point-to-Point Protocol over Ethernet (PPPoE) is a common way of delivering triple- and quad-play (voice, video, data, and mobile) services over both fiber and hybrid fiber-coaxial (HFC) networks. Active PPPoE uses dedicated fiber from an operator's central office all the way to the subscribers' homes, while hybrid networks (often FTTN) use it to transport data via fiber to an intermediate point to ensure sufficiently high throughput speeds over last-mile copper connections.

This approach has become increasingly popular in recent years with telecoms service providers in both North America (AT&T, Telus, for example) and Europe's Fastweb, Telecom Italia, Telekom Austria and Deutsche Telekom, for example. Google has also looked into this approach, amongst others, as a way to deliver multiple services over open-access networks in the United States. [37]

Electrical network

Once on private property, the signal is typically converted into an electrical format.

The optical network terminal (ONT, an ITU-T term) or unit (ONU, an identical IEEE term) converts the optical signal into an electrical signal using thin film filter technology. These units require electrical power for their operation, so some providers connect them to backup batteries in case of power outages to ensure emergency access to telecommunications. The optical line terminations "range" the optical network terminals or units in order to provide TDMA time slot assignments for upstream communication.

For FTTH and for some forms of FTTB, it is common for the building's existing Ethernet, phone, and cable TV systems to connect directly to the optical network terminal or unit. If all three systems cannot directly reach the unit, it is possible to combine signals and transport them over a common medium such as Ethernet. Once closer to the end user, equipment such as a router or network interface controller can separate the signals and convert them into the appropriate protocol.

For FTTC and FTTN, the combined internet, video and telephone signal travels to the building over existing telephone or cable wiring until it reaches the end-user's living space, where a VDSL or DOCSIS modem converts data and video signals into Ethernet protocol, which is sent over the end-user's category 5 cable.

See also

Related Research Articles

Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.

<span class="mw-page-title-main">DSLAM</span> Network device that connects DSL interfaces to a digital communications channel

A digital subscriber line access multiplexer is a network device, often located in telephone exchanges, that connects multiple customer digital subscriber line (DSL) interfaces to a high-speed digital communications channel using multiplexing techniques. Its cable internet (DOCSIS) counterpart is the cable modem termination system.

<span class="mw-page-title-main">Internet access</span> Individual connection to the Internet


Internet access is a facility or service that provides connectivity for a computer, a computer network, or other network device to the Internet, and for individuals or organizations to access or use applications such as email and the World Wide Web. Internet access is offered for sale by an international hierarchy of Internet service providers (ISPs) using various networking technologies. At the retail level, many organizations, including municipal entities, also provide cost-free access to the general public.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications network that uses only unpowered devices to carry signals, as opposed to electronic equipment. In practice, PONs are typically used for the last mile between Internet service providers (ISP) and their customers. In this use, a PON has a point-to-multipoint topology in which an ISP uses a single device to serve many end-user sites using a system such as 10G-PON or GPON. In this one-to-many topology, a single fiber serving many sites branches into multiple fibers through a passive splitter, and those fibers can each serve multiple sites through further splitters. The light from the ISP is divided through the splitters to reach all the customer sites, and light from the customer sites is combined into the single fiber. Many fiber ISPs prefer this system.

TransACT is the trading name of TransACT Capital Communications, an Australian telecommunications company based in Canberra which provides broadband internet access, fixed telephony, cable television services, and mobile phone services in Canberra and a subset of these services in Queanbeyan, throughout South-east New South Wales and in Victoria.

<span class="mw-page-title-main">Triple play (telecommunications)</span> Bundling of television, internet, and telephone service

In the field of telecommunications, the concept of triple play service refers to the provision of three essential services — high-speed broadband Internet access, television, and latency-sensitive telephone services — all delivered over a single broadband connection. This approach emphasizes the convergence of multiple services by a single supplier, aiming to enhance user convenience and streamline service delivery.

In telecommunications, cable Internet access, shortened to cable Internet, is a form of broadband internet access which uses the same infrastructure as cable television. Like digital subscriber line and fiber to the premises services, cable Internet access provides network edge connectivity from the Internet service provider to an end user. It is integrated into the cable television infrastructure analogously to DSL which uses the existing telephone network. Cable TV networks and telecommunications networks are the two predominant forms of residential Internet access. Recently, both have seen increased competition from fiber deployments, wireless, mobile networks and satellite internet access.

<span class="mw-page-title-main">Multimedia over Coax Alliance</span> International standards consortium that publishes specifications for networking over coaxial cable

The Multimedia over Coax Alliance (MoCA) is an international standards consortium that publishes specifications for networking over coaxial cable. The technology was originally developed to distribute IP television in homes using existing cabling, but is now used as a general-purpose Ethernet link where it is inconvenient or undesirable to replace existing coaxial cable with optical fiber or twisted pair cabling.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

Ethernet in the first mile (EFM) refers to using one of the Ethernet family of computer network technologies between a telecommunications company and a customer's premises. From the customer's point of view, it is their first mile, although from the access network's point of view it is known as the last mile.

The prevalent means of connecting to the Internet in Germany is DSL, introduced by Deutsche Telekom in 1999. Other technologies such as Cable, FTTH and FTTB (fiber), Satellite, UMTS/HSDPA (mobile) and LTE are available as alternatives.

Broadband Internet in Israel has been available since the late 1990s in theory, but it only became practically accessible to most customers in 2001. By 2008, Israel had become one of the few countries with developed broadband capabilities across two types of infrastructure—cable and DSL—reaching over 95% of the population. Actual broadband market penetration stands at 77%, ranked 7th in the world. In 2010, Israel was ranked 26th in The Economist's Digital Economy Rankings. In 2022, Israel was ranked first for digital quality of life by Surfshark.

In Romania, there are 18.8 million connections to the Internet. Romania's country code is .ro. The .eu domain is also used, as it is shared with other European Union member states. There were over 600 000 domains registered under .ro at the end of 2012.

<span class="mw-page-title-main">Video-ready access device</span>

A video-ready access device (VRAD) provides digital subscriber line access and high-definition television programming to customers subscribed to IPTV services such as AT&T's U-verse, Bell Canada's Bell Fibe TV, Claro Puerto Rico's Claro TV, and Telus's Optik TV. VRAD equipment manufactured by Alcatel-Lucent can be configured to support between 48 and 864 lines per box. The VRAD boxes are composed of circuit boards providing service, fed by fiber-optic cable.

10G-PON is a 2010 computer networking standard for data links, capable of delivering shared Internet access rates up to 10 Gbit/s over dark fiber. This is the ITU-T's next-generation standard following on from GPON or gigabit-capable PON. Optical fibre is shared by many subscribers in a network known as FTTx in a way that centralises most of the telecommunications equipment, often displacing copper phone lines that connect premises to the phone exchange. Passive optical network (PON) architecture has become a cost-effective way to meet performance demands in access networks, and sometimes also in large optical local networks for fibre-to-the-desk.

<span class="mw-page-title-main">National Broadband Network</span> Telecommunications network in Australia

The National Broadband Network (NBN) is an Australian national wholesale open-access data network. It includes wired and radio communication components rolled out and operated by NBN Co, a government-owned corporation. Internet service providers, known under NBN as retail service providers or RSPs, contract with NBN to access the data network and sell fixed Internet access to end users.

EPON Protocol over Coax, or EPoC, refers to the transparent extension of an Ethernet passive optical network (EPON) over a cable operator's hybrid fiber-coax (HFC) network. From the service provider's perspective the use of the coax portion of the network is transparent to EPON protocol operation in the optical line terminal (OLT) thereby creating a unified scheduling, management, and quality of service (QoS) environment that includes both the optical and coax portions of the network. The IEEE 802.3 Ethernet Working Group initiated a standards process with the creation of an EPoC Study Group in November 2011. EPoC adds to the family of IEEE 802.3 Ethernet in the First Mile (EFM) standards.

Physical media refers to the physical materials that are used to store or transmit information in data communications. These physical media are generally physical objects made of materials such as copper or glass. They can be touched and felt, and have physical properties such as weight and color. For a number of years, copper and glass were the only media used in computer networking.

<span class="mw-page-title-main">G.fast</span> ITU-T Recommendation

G.fast is a digital subscriber line (DSL) protocol standard for local loops shorter than 500 meters, with performance targets between 100 Mbit/s and 1 Gbit/s, depending on loop length. High speeds are only achieved over very short loops. Although G.fast was initially designed for loops shorter than 250 meters, Sckipio in early 2015 demonstrated G.fast delivering speeds over 100 Mbit/s at nearly 500 meters and the EU announced a research project.

<span class="mw-page-title-main">AT&T Internet</span> Broadband internet service

AT&T Internet is an AT&T brand of broadband internet service. Previously, AT&T Internet was branded as U-verse Internet and bundled with U-verse TV, which was spun off into the newly independent DirecTV in 2021. AT&T Internet plans powered by fiber-optic cable use the AT&T Fiber brand.

References

  1. "How Fiber Optics Work". https://computer.howstuffworks.com/fiber-optic4.htm. How Stuff Works. Retrieved 2 June 2020.
  2. Mark Jackson (October 25, 2010), "The Definition of UK Superfast Next Generation Broadband", ISP Review, retrieved May 3, 2012
  3. "Review of the wholesale local access market" (PDF). Ofcom.org.uk . June 1, 2010. Retrieved June 18, 2021.
  4. Poulus, Tim (November 17, 2010). "FTTH networking: Active Ethernet versus Passive Optical Networking and point-to-point vs. point-to-multipoint" . Telecompaper. Retrieved July 12, 2013.
  5. Ed Gubbins, "Active Ethernet grows in PON's shadow" Archived 2011-10-01 at the Wayback Machine , NXTcomm Daily News, Penton Media, 13 May 2008. Retrieved 12 July 2013
  6. Coomans, Werner; Moraes, Rodrigo B.; Hooghe, Koen; Duque, Alex; Galaro, Joe; Timmers, Michael; Van Wijngaarden, Adriaan J.; Guenach, Mamoun; Maes, Jochen (2015). "XG-fast: the 5th generation broadband". IEEE Communications Magazine. 53 (12). IEEE Xplore: 83–88. doi:10.1109/MCOM.2015.7355589. S2CID   33169617.
  7. "BornHack Event Network Information" . Retrieved July 8, 2024.
  8. Robert Reid, "All multimode fiber is not created equal" [ permanent dead link ], Cabling Installation & Maintenance, PennWell Corporation, February 2007, retrieved 12 July 2013
  9. Heath, Nick (September 26, 2014). "Could ultrafast broadband over copper speed the rollout of gigabit internet?". TechRepublic. Archived from the original on July 22, 2015. Retrieved September 26, 2014.
  10. "FTTH Council – Definition of Terms" (PDF). FTTH Council. August 11, 2006. Retrieved September 1, 2011.[ dead link ]
  11. "FTTH Council – Definition of Terms" (PDF). FTTH Council. January 9, 2009. Archived from the original (PDF) on June 3, 2015. Retrieved June 22, 2015.
  12. 1 2 3 "FTTH Council – Definition of Terms" (PDF). FTTH Council. September 2011. Archived from the original (PDF) on October 8, 2013. Retrieved June 27, 2013.
  13. "FTTH Council – Definition of Terms" (PDF). FTTH Council. February 2016. Archived from the original (PDF) on June 22, 2015. Retrieved June 22, 2015.
  14. "FTTx". OFS Optics. Retrieved July 17, 2017.
  15. McCullough, Don (August 2005), "Flexibility is key to successful fiber to the premises deployments" Archived 2011-10-09 at the Wayback Machine , Lightwave22 (8). Retrieved on 2010-01-27.
  16. da Silva, Henrique (March 2005), "Optical Access Networks" Archived March 4, 2016, at the Wayback Machine , Instituto de Telecomunicações, 9 March 2005, slide 10. Retrieved on 2007-03-25.
  17. Ed Gubbins, "Analyst: AT&T may replace some FTTC with FTTP", Connected Planet, Penton Media, Inc., 21 December 2007
  18. Svensson, Peter (March 26, 2010). /industries/telecom/2010-03-26-verizon-fios_N.htm/ "Verizon winds down expensive Fios expansion". USA Today . Associated Press. Archived from the original on January 11, 2012. Retrieved August 12, 2024.{{cite news}}: Check |archive-url= value (help)
  19. EPB, website of a non-profit agency of the City of Chattanooga, established in 1935 to provide electric power to the greater Chattanooga area. Retrieved 12 July 2013.
  20. EPBFI, a website for EPB Fiber Optics. Retrieved 3 June 2014.
  21. Enrico Pietralunga (March 23, 2009). "Fastweb FTTH: A 10-years success story" (PDF). Konferenzbeitraege Berlin presentation. Fastweb. Archived from the original (PDF) on October 9, 2011. Retrieved May 3, 2012.
  22. "FTTH with the Optical Distribution Frame". Connections. Reichle & De-Massari AG. March 17, 2011. Archived from the original on March 28, 2012. Retrieved May 3, 2012.
  23. 1 2 Sean Buckley (January 17, 2011). "Italy: FTTH reaches 348,000 subscriber mark". Fierce Telecom. Retrieved May 3, 2012.
  24. "Digital Agenda: Commission outlines measures to deliver fast and ultra-fast broadband in Europe". Europe's Information Society. September 20, 2010. Archived from the original on November 3, 2012. Retrieved May 3, 2012.
  25. "Net + Telefone Fibra". MEO. Archived from the original on June 27, 2018. Retrieved June 26, 2018.
  26. "Press Release" (PDF). Fibre to the Home Council Europe. March 14, 2019. Archived from the original (PDF) on July 31, 2020. Retrieved June 2, 2020.
  27. "Google Fiber | Gigabit Fiber Optic Internet". fiber.google.com. Retrieved December 31, 2023.
  28. "VLAN standard could extend broadband reach to poorest". Computing . March 26, 2010.
  29. "Choosing The Right FTTH Architecture For Your Network". OSPInsight. Retrieved August 13, 2021.
  30. "Facts and Figures 2010" Archived 2012-07-08 at archive.today , Annual Report, Telekom / Austria Group. Retrieved 12 July 2013.
  31. "Telecommunication Market Trends", 2010 Annual Report, Swisscom, page 22. Retrieved 12 July 2013.
  32. "Best-Ever Mobile Broadband Sales and Strong Cash Flows Highlight AT&T's Fourth-Quarter Results; Stock Buyback Begins on Previous 300 Million Share Authorization" Archived September 11, 2012, at the Wayback Machine , News Release, AT&T, 26 January 2012
  33. Dieter Elixmann, et al., "The Economics of Next Generation Access-Final Report: Study for the European Competitive Telecommunication Association (ECTA)", WIK-Consult GmbH, 10 September 2008. Retrieved 12 July 2012.
  34. Rudolf van der Berg, "Developments in Fiber Technologies and Investment", Working Party on Communication Infrastructures and Services Policy (CISP), Committee for Information, Computer and Communication Policy (ICCP), Directorate for Science, Technology and Industry (DSTI), Organisation for Economic Co-operation and Development (OECD), 3 April 2008. Retrieved 12 July 2013.
  35. Wang, K.; Mas Machuca, C.; Wosinska, L.; Urban, P. J.; Gavler, A.; Brunnström, K.; Chen, J. (2017). "Techno-Economic Analysis of Active Optical Network Migration Toward Next-Generation Optical Access". Journal of Optical Communications and Networking. 9 (4): 327. doi:10.1364/JOCN.9.000327. S2CID   18604241.
  36. "Fundamentals" (PDF). jm.telecoms.free.fr. Retrieved April 4, 2023.
  37. Stephen Hardy, "Is Active Ethernet best FTTH option for Google?" Archived December 28, 2011, at the Wayback Machine , Lightwave, PennWell Corporation, 24 February 2010