Broadband

Last updated

In telecommunications, broadband is wide bandwidth data transmission which transports multiple signals and traffic types. The medium can be coaxial cable, optical fiber, radio or twisted pair.

Bandwidth (signal processing) difference between the upper and lower frequencies passed by a filter, communication channel, or signal spectrum

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to passband bandwidth or baseband bandwidth. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency.

Data transmission is the transfer of data over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication channels, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

Coaxial cable A type of electrical cable with an inner conductor surrounded by concentric insulating layer and conducting shield

Coaxial cable, or coax is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was used in the first (1858) and following transatlantic cable installations, but its theory wasn't described until 1880 by English physicist, engineer, and mathematician Oliver Heaviside, who patented the design in that year.

Contents

In the context of Internet access, broadband is used to mean any high-speed Internet access that is always on and faster than dial-up access over traditional analog or ISDN PSTN services.

Internet access individual connection to the internet

Internet access is the ability of individuals and organizations to connect to the Internet using computer terminals, computers, and other devices; and to access services such as email and the World Wide Web. Internet access is sold by Internet service providers (ISPs) delivering connectivity at a wide range of data transfer rates via various networking technologies. Many organizations, including a growing number of municipal entities, also provide cost-free wireless access.

Dial-up Internet access method of internet access using a phone line and the creation of specific tones

Dial-up Internet access is a form of Internet access that uses the facilities of the public switched telephone network (PSTN) to establish a connection to an Internet service provider (ISP) by dialing a telephone number on a conventional telephone line. The user's computer or router uses an attached modem to encode and decode information into and from audio frequency signals, respectively.

Plain old telephone service (POTS), or plain ordinary telephone service, is a retronym for voice-grade telephone service employing analog signal transmission over copper loops. POTS was the standard service offering from telephone companies from 1876 until 1988 in the United States when the Integrated Services Digital Network (ISDN) Basic Rate Interface (BRI) was introduced, followed by cellular telephone systems, and voice over IP (VoIP). POTS remains the basic form of residential and small business service connection to the telephone network in many parts of the world. The term reflects the technology that has been available since the introduction of the public telephone system in the late 19th century, in a form mostly unchanged despite the introduction of Touch-Tone dialing, electronic telephone exchanges and fiber-optic communication into the public switched telephone network (PSTN).

Overview

Different criteria for "broad" have been applied in different contexts and at different times. Its origin is in physics, acoustics, and radio systems engineering, where it had been used with a meaning similar to "wideband", [1] [2] or in the context of audio noise reduction systems, where it indicated a single-band rather than a multiple audio band system design of the compander. Later, with the advent of digital telecommunications, the term was mainly used for transmission over multiple channels. Whereas a passband signal is also modulated so that it occupies higher frequencies (compared to a baseband signal which is bound to the lowest end of the spectrum, see line coding), it is still occupying a single channel. The key difference is that what is typically considered a broadband signal in this sense is a signal that occupies multiple (non-masking, orthogonal) passbands, thus allowing for much higher throughput over a single medium but with additional complexity in the transmitter/receiver circuitry.

Acoustics science that deals with the study of all mechanical waves in gases, liquids, and solids including vibration, sound, ultrasound and infrasound

Acoustics is the branch of physics that deals with the study of all mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.

In communications, a system is wideband when the message bandwidth significantly exceeds the coherence bandwidth of the channel. Some communication links have such a high data rate that they are forced to use a wide bandwidth; other links may have relatively low data rates, but deliberately use a wider bandwidth than "necessary" for that data rate in order to gain other advantages; see spread spectrum.

Frequency-division multiplexing multiplexing dividing a comm medium into non-overlapping frequency bands, each carrying a separate signal

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

The term became popularized through the 1990s as a marketing term for Internet access that was faster than dialup access, the original Internet access technology, which was limited to a maximum bandwidth of 56 kbit/s. This meaning is only distantly related to its original technical meaning.

Broadband technologies

Telecommunications

In telecommunications, a broadband signalling method is one that handles a wide band of frequencies. "Broadband" is a relative term, understood according to its context. The wider (or broader) the bandwidth of a channel, the greater the data-carrying capacity, given the same channel quality.

A relative term is a term that makes two or more distinct references to objects. A relative term is typically expressed in ordinary language by means of a phrase with explicit or implicit blanks. Examples:

In radio, for example, a very narrow band will carry Morse code, a broader band will carry speech, and a still broader band will carry music without losing the high audio frequencies required for realistic sound reproduction. This broad band is often divided into channels or "frequency bins" using passband techniques to allow frequency-division multiplexing instead of sending a higher-quality signal.

Radio Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Morse code Transmission of language with brief pulses

Morse code is a character encoding scheme used in telecommunication that encodes text characters as standardized sequences of two different signal durations called dots and dashes or dits and dahs. Morse code is named for Samuel F. B. Morse, an inventor of the telegraph.

Music form of art using sound and silence

Music is an art form and cultural activity whose medium is sound organized in time. General definitions of music include common elements such as pitch, rhythm, dynamics, and the sonic qualities of timbre and texture. Different styles or types of music may emphasize, de-emphasize or omit some of these elements. Music is performed with a vast range of instruments and vocal techniques ranging from singing to rapping; there are solely instrumental pieces, solely vocal pieces and pieces that combine singing and instruments. The word derives from Greek μουσική . See glossary of musical terminology.

In data communications, a 56k modem will transmit a data rate of 56 kilobits per second (kbit/s) over a 4-kilohertz-wide telephone line (narrowband or voiceband). In the late 1980s, the Broadband Integrated Services Digital Network (B-ISDN) used the term to refer to a broad range of bit rates, independent of physical modulation details. [3] The various forms of digital subscriber line (DSL) services are broadband in the sense that digital information is sent over multiple channels. Each channel is at higher frequency than the baseband voice channel, so it can support plain old telephone service on a single pair of wires at the same time. At the same time, this was made on the form of CSS in the HTML JS language library. [4] However, when that same line is converted to a non-loaded twisted-pair wire (no telephone filters), it becomes hundreds of kilohertz wide (broadband) and can carry up to 100 megabits per second using very-high-bit-rate digital subscriber line (VDSL or VHDSL) techniques. [5]

Computer networks

Many computer networks use a simple line code to transmit one type of signal using a medium's full bandwidth using its baseband (from zero through the highest frequency needed). Most versions of the popular Ethernet family are given names such as the original 1980s 10BASE5 to indicate this. Networks that use cable modems on standard cable television infrastructure are called broadband to indicate the wide range of frequencies that can include multiple data users as well as traditional television channels on the same cable. Broadband systems usually use a different radio frequency modulated by the data signal for each band. [6]

The total bandwidth of the medium is larger than the bandwidth of any channel. [7]

The 10BROAD36 broadband variant of Ethernet was standardized by 1985, but was not commercially successful. [8] [9]

The DOCSIS standard became available to consumers in the late 1990s, to provide Internet access to cable television residential customers. Matters were further confused by the fact that the 10PASS-TS standard for Ethernet ratified in 2008 used DSL technology, and both cable and DSL modems often have Ethernet connectors on them.

TV and video

A television antenna may be described as "broadband" because it is capable of receiving a wide range of channels, while a single-frequency or Lo-VHF antenna is "narrowband" since it receives only 1 to 5 channels. The U.S. federal standard FS-1037C defines "broadband" as a synonym for wideband. [10] "Broadband" in analog video distribution is traditionally used to refer to systems such as cable television, where the individual channels are modulated on carriers at fixed frequencies. [11] In this context, baseband is the term's antonym, referring to a single channel of analog video, typically in composite form with separate baseband audio. [12] The act of demodulating converts broadband video to baseband video. Fiber optic allows the signal to be transmitted farther without being repeated. Cable companies use a hybrid system using fiber to transmit the signal to neighborhoods and then changes the signal from light to radio frequency to be transmitted over coaxial cable to homes. Doing so reduces the use of having multiple head ends. A head end gathers all the information from the local cable networks and movie channels and then feeds the information into the system.

However, "broadband video" in the context of streaming Internet video has come to mean video files that have bit-rates high enough to require broadband Internet access for viewing. "Broadband video" is also sometimes used to describe IPTV Video on demand. [13]

Alternative technologies

Power lines have also been used for various types of data communication. Although some systems for remote control are based on narrowband signaling, modern high-speed systems use broadband signaling to achieve very high data rates. One example is the ITU-T G.hn standard, which provides a way to create a local area network up to 1 Gigabit/s (which is considered high-speed as of 2014) using existing home business and home wiring (including power lines, but also phone lines and coaxial cables).

In 2014, researchers at Korea Advanced Institute of Science and Technology made developments on the creation of ultra-shallow broadband optical instruments. [14]

Internet broadband

In the context of Internet access, the term "broadband" is used loosely to mean "access that is always on and faster than the traditional dial-up access". [15] [16]

A range of more precise definitions of speed have been prescribed at times, including:

Broadband Internet service in the United States was effectively treated or managed as a public utility by net neutrality rules until being overturned by the FCC in December, 2017. [20] [21] [22] [23] [24] [25]

Speed qualifiers

A number of national and international regulators categorize broadband connections according to upload, and download speeds, stated in Mbps (megabits per second).

TermRegulator(s)Min Download MbpsMin Upload MbpsNotes
Full fibre / FFTP/H [26] Ofcom 1001
Gigabit [27] EU 10001
Ultrafast [28] Ofcom 3001
Ultra-fast / Gfast [29] [27] EU, UK Government 1001
Fast [27] EU 30
Superfast [30] Ofcom 301
Superfast [30] UK Government 241
Broadband [31] FCC 253
Broadband [32] Ofcom 101

Global bandwidth concentration

Global bandwidth concentration: 3 countries have almost 50% between them; 10 countries almost 75%. GlobalBandwidthConcentration.jpg
Global bandwidth concentration: 3 countries have almost 50% between them; 10 countries almost 75%.

Bandwidth has historically been very unequally distributed worldwide, with increasing concentration in the digital age. Historically only 10 countries have hosted 70–75 % of the global telecommunication capacity (see pie-chart Figure on the right). [33] In 2014, only three countries (China, US, Japan) host 50% of the globally installed telecommunication bandwidth potential. The U.S. lost its global leadership in terms of installed bandwidth in 2011, being replaced by China, which hosts more than twice as much national bandwidth potential in 2014 (29% versus 13% of the global total). [33]

See also

Nation specific:

Related Research Articles

Wireless broadband telecommunications technology

Wireless broadband is telecommunications technology that provides high-speed wireless Internet access or computer networking access over a wide area. The term comprises both fixed and mobile broadband.

Integrated Services Digital Network Set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the traditional circuits of the public switched telephone network, first defined in 1988

Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the traditional circuits of the public switched telephone network. It was first defined in 1988 in the CCITT red book. Prior to ISDN, the telephone system was viewed as a way to transport voice, with some special services available for data. The key feature of ISDN is that it integrates speech and data on the same lines, adding features that were not available in the classic telephone system. The ISDN standards define several kinds of access interfaces, such as Basic Rate Interface (BRI), Primary Rate Interface (PRI), Narrowband ISDN (N-ISDN), and Broadband ISDN (B-ISDN).

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G mobile communications.

Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.

The Primary Rate Interface (PRI) is a telecommunications interface standard used on an Integrated Services Digital Network (ISDN) for carrying multiple DS0 voice and data transmissions between the network and a user.

Time-division multiplexing multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. It is used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century.

Cable modem networking device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

10BROAD36 is an obsolete computer network standard in the Ethernet family. It was developed during the 1980s and specified in IEEE 802.3b-1985.

Multichannel Multipoint Distribution Service

Multichannel Multipoint Distribution Service (MMDS), formerly known as Broadband Radio Service (BRS) and also known as Wireless Cable, is a wireless telecommunications technology, used for general-purpose broadband networking or, more commonly, as an alternative method of cable television programming reception.

Digital subscriber line access multiplexer Network equipment

A digital subscriber line access multiplexer is a network device, often located in telephone exchanges, that connects multiple customer digital subscriber line (DSL) interfaces to a high-speed digital communications channel using multiplexing techniques.

Data Over Cable Service Interface Specification is an international telecommunications standard that permits the addition of high-bandwidth data transfer to an existing cable television (CATV) system. It is used by many cable television operators to provide Internet access over their existing hybrid fiber-coaxial (HFC) infrastructure. The version numbers are sometimes prefixed with simply "D" instead of "DOCSIS".

Satellite Internet access is Internet access provided through communications satellites. Modern consumer grade satellite Internet service is typically provided to individual users through geostationary satellites that can offer relatively high data speeds, with newer satellites using Ku band to achieve downstream data speeds up to 506 Mbit/s.

Broadband over power lines (BPL) is a method of power line communication (PLC) that allows relatively high-speed digital data transmission over the public electric power distribution wiring. BPL uses higher frequencies, a wider frequency range and different technologies from other forms of power-line communications to provide high-rate communication over longer distances. BPL uses frequencies which are part of the radio spectrum allocated to over-the-air communication services; therefore the prevention of interference to, and from, these services is a very important factor in designing BPL systems.

The ideal telecommunication network has the following characteristics: broadband, multi-media, multi-point, multi-rate and economical implementation for a diversity of services (multi-services). The Broadband Integrated Services Digital Network (B-ISDN) was planned to provide these characteristics. Asynchronous Transfer Mode (ATM) was promoted as a target technology for meeting these requirements.

Triple play (telecommunications) marketing term in telecommunications

In telecommunications, triple play service is a marketing term for the provisioning, over a single broadband connection, of two bandwidth-intensive services, broadband Internet access and television, and the latency-sensitive telephone. Triple play focuses on a supplier convergence rather than solving technical issues or a common standard. However, standards like G.hn might deliver all these services on a common technology.

Spectrum or Charter Spectrum is a trade name of Charter Communications, used to market consumer cable television, internet, telephone, and wireless services provided by the company.

In telecommunications, cable Internet access, shortened to cable Internet, is a form of broadband Internet access which uses the same infrastructure as a cable television. Like digital subscriber line and fiber to the premises services, cable Internet access provides network edge connectivity from the Internet service provider to an end user. It is integrated into the cable television infrastructure analogously to DSL which uses the existing telephone network. Cable TV networks and telecommunications networks are the two predominant forms of residential Internet access. Recently, both have seen increased competition from fiber deployments, wireless, and mobile networks.

Internet in the United States

The Internet in the United States grew out of the ARPANET, a network sponsored by the Advanced Research Projects Agency of the U.S. Department of Defense during the 1960s. The Internet in the United States in turn provided the foundation for the worldwide Internet of today.

References

  1. Attenborough, Keith (1988). "Review of ground effects on outdoor sound propagation from continuous broadband sources". Applied Acoustics. 24 (4): 289–319. doi:10.1016/0003-682X(88)90086-2.
  2. John P. Shanidin (September 9, 1949). "Antenna". US Patent 2,533,900. Archived from the original on December 1, 2011. Issued December 12, 1950.
  3. Ender Ayanoglu; Nail Akar. "B-ISDN (Broadband Integrated Services Digital Network)". Center for Pervasive Communications and Computing, UC Irvine. Archived from the original on October 16, 2009. Retrieved July 12, 2011.
  4. "Knowledge Base - How Broadband Words". Archived from the original on July 21, 2016. Retrieved July 27, 2016.
  5. "New ITU Standard Delivers 10x ADSL Speeds". May 27, 2005. Archived from the original on September 3, 2016. Retrieved July 27, 2016.
  6. Carl Stephen Clifton (1987). What every engineer should know about data communications. CRC Press. p. 64. ISBN   978-0-8247-7566-7. Archived from the original on 2016-05-29. Broadband: Modulating the data signal onto an RF carrier and applying this RF signal to the carrier media
  7. Clifton, Carl Stephen (1987). What every engineer should know about data communications. New York: M. Dekker. p. 64. ISBN   978-0-8247-7566-7. Archived from the original on 29 June 2016. Retrieved 21 June 2016. Broadband: relative term referring to a systemm which carries a wide frequency range.
  8. "802.3b-1985 – Supplement to 802.3: Broadband Medium Attachment Unit and Broadband Medium Specifications, Type 10BROAD36 (Section 11)". IEEE Standards Association. 1985. Archived from the original on February 25, 2012. Retrieved July 12, 2011.
  9. Paula Musich (July 20, 1987). "Broadband user share pains, gains". Network World. pp. 1, 8. Archived from the original on February 25, 2012. Retrieved July 14, 2011. Broadband networks employ frequency-division multiplexing to divide coaxial cable into separate channels, each of which serves as an individual local network.
  10. "Definition: broadband". Federal Standard 1037C, Glossary of Telecommunication Terms. 1996. Archived from the original on May 5, 2012. Retrieved July 19, 2011.
  11. Gilster, Ron; Heneveld, Helen (2004-06-22). HTI+ Home Technology Integration and CEDIA Installer I All-in-One Exam Guide. google.co.uk. ISBN   9780072231328. Archived from the original on 2016-04-29.
  12. Baxter, Les A.; Georger, William H. (August 1, 1995). "Transmitting video over structured cabling systems". www.cablinginstall.com. AT&T Bell Laboratories. Archived from the original on September 29, 2015. Retrieved April 16, 2017.
  13. Mark Sweney (2008-02-07). "BT Vision boasts 150,000 customers | Media". The Guardian. Archived from the original on 2017-01-29. Retrieved 2016-06-21.
  14. "Broadband and ultrathin polarization manipulators developed". Phys.org. 2014-12-04. Archived from the original on 2016-05-15. Retrieved 2016-06-21.
  15. 1 2 "What is Broadband?". The National Broadband Plan. US Federal Communications Commission. Archived from the original on July 13, 2011. Retrieved July 15, 2011.
  16. Hart, Jeffrey A.; Reed, Robert R.; Bar, François (November 1992). "The building of the internet". Telecommunications Policy. 16 (8): 666–689. doi:10.1016/0308-5961(92)90061-S.
  17. "Recommendation I.113, Vocabulary of Terms for Broadband aspects of ISDN". ITU-T. June 1997. Archived from the original on 6 November 2012. Retrieved 19 July 2011.
  18. "Inquiry Concerning the Deployment of Advanced Telecommunications Capability to All Americans in a Reasonable and Timely Fashion, and Possible Steps to Accelerate Such Deployment Pursuant to Section 706 of the Telecommunications Act of 1996, as Amended by the Broadband Data Improvement Act" (PDF). GN Docket No. 10-159, FCC-10-148A1. Federal Communications Commission. August 6, 2010. Archived from the original (PDF) on 2012-01-06. Retrieved July 12, 2011.
  19. 1 2 "FCC Finds U.S. Broadband Deployment Not Keeping Pace | Federal Communications Commission". Fcc.gov. 2015-02-04. Archived from the original on 2016-07-05. Retrieved 2016-06-21.
  20. Kang, Cecilia. "F.C.C. Repeals Net Neutrality Rules". The New York Times. Retrieved 2018-01-11.
  21. Ruiz, Rebecca R. (March 12, 2015). "F.C.C. Sets Net Neutrality Rules". The New York Times . Archived from the original on March 13, 2015. Retrieved March 13, 2015.
  22. Sommer, Jeff (March 12, 2015). "What the Net Neutrality Rules Say". The New York Times. Archived from the original on March 13, 2015. Retrieved March 13, 2015.
  23. FCC Staff (March 12, 2015). "Federal Communications Commission - FCC 15-24 - In the Matter of Protecting and Promoting the Open Internet - GN Docket No. 14-28 - Report and Order on Remand, Declaratory Ruling, and Order" (PDF). Federal Communications Commission . Archived (PDF) from the original on March 12, 2015. Retrieved March 13, 2015.
  24. Reisinger, Don (April 13, 2015). "Net neutrality rules get published -- let the lawsuits begin". CNET . Archived from the original on April 14, 2015. Retrieved April 13, 2015.
  25. Federal Communications Commission (April 13, 2015). "Protecting and Promoting the Open Internet - A Rule by the Federal Communications Commission on 04/13/2015". Federal Register . Archived from the original on May 2, 2015. Retrieved April 13, 2015.
  26. "A Brief Price Comparison of UK FTTP / FTTH Ultrafast Broadband ISPs". ISP Review. Retrieved 10 April 2019.
  27. 1 2 3 "Broadband in the EU Member States (12/2018)". EU. Retrieved 10 April 2019.
  28. "UK HOME BROADBAND PERFORMANCE" (PDF). Ofcom. Ofcom. Retrieved 10 April 2019.
  29. "Ultrafast fibre Gfast". Openreach. Retrieved 10 April 2019.
  30. 1 2 Hood, Hannah Hood. "Super fast broadband" (PDF). What Do They Know. Department for Culture, Media and Sport. Retrieved 10 April 2019.
  31. "Faster Internet: FCC Sets New Definition for Broadband Speeds". NBC News. 2015-01-29. Retrieved 10 April 2019.
  32. "CONNECTED NATIONS 2017" (PDF). Ofcom. Retrieved 10 April 2019.
  33. 1 2 3 "The bad news is that the digital access divide is here to stay: Domestically installed bandwidths among 172 countries for 1986–2014". Escholarship.org. 2016-01-06. Archived from the original on 2016-06-04. Retrieved 2016-06-21.