High-definition video

Last updated

High-definition video (HDTV Video or HD video) is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 vertical scan lines (North America) or 576 vertical lines (Europe) is considered high-definition. 480 scan lines is generally the minimum even though the majority of systems greatly exceed that. Images of standard resolution captured at rates faster than normal (60 frames/second North America, 50 fps Europe), by a high-speed camera may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as filmizing.

Contents

History

The first electronic scanning format, 405 lines, was the first "high definition" television system, since the mechanical systems it replaced had far fewer. From 1939, Europe and the US tried 605 and 441 lines until, in 1941, the FCC mandated 525 for the US. In wartime France, René Barthélemy tested higher resolutions, up to 1,042. In late 1949, official French transmissions finally began with 819. In 1984, however, this standard was abandoned for 625-line color on the TF1 network.

Analog

Modern HD specifications date to the early 1980s, when Japanese engineers developed the HighVision 1,125-line interlaced TV standard (also called MUSE) that ran at 60 frames per second. The Sony HDVS system was presented at an international meeting of television engineers in Algiers, April 1981 and Japan's NHK presented its analog high-definition television (HDTV) system at a Swiss conference in 1983.

The NHK system was standardized in the United States as Society of Motion Picture and Television Engineers (SMPTE) standard #240M in the early 1990s, but abandoned later on when it was replaced by a DVB analog standard. HighVision video is still usable for HDTV video interchange, but there is almost no modern equipment available to perform this function. Attempts at implementing HighVision as a 6 MHz broadcast channel were mostly unsuccessful. All attempts at using this format for terrestrial TV transmission were abandoned by the mid-1990s.[ citation needed ]

Europe developed HD-MAC (1,250 lines, 50 Hz), a member of the MAC family of hybrid analogue/digital video standards; however, it never took off as a terrestrial video transmission format. HD-MAC was never designated for video interchange except by the European Broadcasting Union.

Digital

High-definition digital video was not possible with uncompressed video due to impractically high memory and bandwidth requirements, with a bit rate exceeding 1  Gbit/s for full HD video. [1] Digital HDTV was enabled by the development of discrete cosine transform (DCT) video compression. [2] The DCT is a lossy compression technique that was first proposed by Nasir Ahmed in 1972, [3] and was later adapted into a motion-compensated DCT algorithm for video coding standards such as the H.26x formats from 1988 onwards and the MPEG formats from 1993 onwards. [4] [5] Motion-compensated DCT compression significantly reduced the amount of memory and bandwidth required for digital video, capable of achieving a data compression ratio of around 100:1 compared to uncompressed video. [6] By the early 1990s, DCT video compression had been widely adopted as the video coding standard for HDTV. [2]

The current high-definition video standards in North America were developed during the course of the advanced television process initiated by the Federal Communications Commission in 1987 at the request of American broadcasters. In essence, the end of the 1980s was a death knell for most analog high definition technologies that had developed up to that time.

The FCC process, led by the Advanced Television Systems Committee (ATSC) adopted a range of standards from interlaced 1,080-line video (a technical descendant of the original analog NHK 1125/30 Hz system) with a maximum frame rate of 30 Hz, (60 fields per second) and 720-line video, progressively scanned, with a maximum frame rate of 60 Hz. In the end, however, the DVB standard of resolutions (1080, 720, 480) and respective frame rates (24, 25, 30) were adopted in conjunction with the Europeans that were also involved in the same standardization process. The FCC officially adopted the ATSC transmission standard in 1996 (which included both HD and SD video standards).

In the early 2000s, it looked as if DVB would be the video standard far into the future. However, both Brazil and China have adopted alternative standards for high-definition video[ citation needed ] that preclude the interoperability that was hoped for after decades of largely non-interoperable analog TV broadcasting.

Technical details

This chart shows the most common display resolutions, with the color of each resolution type indicating the display ratio (e.g., red indicates a 4:3 ratio) Vector Video Standards2.svg
This chart shows the most common display resolutions, with the color of each resolution type indicating the display ratio (e.g., red indicates a 4:3 ratio)

High definition video (prerecorded and broadcast) is defined threefold, by:

Often, the rate is inferred from the context, usually assumed to be either 50 Hz (Europe) or 60 Hz (USA), except for 1080p, which denotes 1080p24, 1080p25, and 1080p30, but also 1080p50 and 1080p60.

A frame or field rate can also be specified without a resolution. For example, 24p means 24 progressive scan frames per second and 50i means 25 progressive frames per second, consisting of 50 interlaced fields per second. Most HDTV systems support some standard resolutions and frame or field rates. The most common are noted below. High-definition signals require a high-definition television or computer monitor in order to be viewed. High-definition video has an aspect ratio of 16:9 (1.78:1). The aspect ratio of regular widescreen film shot today is typically 1.85:1 or 2.39:1 (sometimes traditionally quoted at 2.35:1). Standard-definition television (SDTV) has a 4:3 (1.33:1) aspect ratio, although in recent years many broadcasters have transmitted programs "squeezed" horizontally in 16:9 anamorphic format, in hopes that the viewer has a 16:9 set which stretches the image out to normal-looking proportions, or a set which "squishes" the image vertically to present a "letterbox" view of the image, again with correct proportions.

Common high-definition video modes

Video modeFrame size in pixels (W×H)Pixels per image1Scanning typeFrame rate (Hz)
720p (also known as HD Ready) 1,280×720921,600 Progressive 23.976, 24, 25, 29.97, 30, 50, 59.94, 60, 72
1080i (also known as Full HD) 1,920×1,0802,073,600 Interlaced 25 (50 fields/s), 29.97 (59.94 fields/s), 30 (60 fields/s)
1080p (also known as Full HD) 1,920×1,0802,073,600 Progressive 24 (23.976), 25, 30 (29.97), 50, 60 (59.94)
1440p (also known as Quad HD) 2,560×1,4403,686,400 Progressive 24 (23.976), 25, 30 (29.97), 50, 60 (59.94)

Ultra high-definition video modes

Video modeFrame size in pixels (W×H)Pixels per image1Scanning typeFrame rate (Hz)
2000 2,048×1,5363,145,728 Progressive 24, 60
2160p (also known as 4K UHD) 3,840×2,1608,294,400 Progressive 60, 120
2540p 4,520×2,54011,480,800 Progressive 24, 30
4000p 4,096×3,07212,582,912 Progressive 24, 30, 60
4320p (also known as 8K UHD) 7,680×4,32033,177,600 Progressive 60, 120

Note: 1 Image is either a frame or, in case of interlaced scanning, two fields (EVEN and ODD).

Also, there are less common but still popular UltraWide resolutions, such as 2560×1080p (1080p UltraWide). There is also a WQHD+ option for some of these.

HD content

High-definition image sources include terrestrial broadcast, direct broadcast satellite, digital cable, high definition disc (BD), digital cameras, Internet downloads, and video game consoles.

Blu-ray Discs were jointly developed by 9 initial partners including Sony and Phillips (which jointly developed CDs for audio), and Pioneer (which developed its own Laser-disc previously with some success) among others. HD-DVD discs were primarily developed by Toshiba and NEC with some backing from Microsoft, Warner Bros., Hewlett Packard, and others. On February 19, 2008 Toshiba announced it was abandoning the format and would discontinue development, marketing and manufacturing of HD-DVD players and drives.

Types of recorded media

The high resolution photographic film used for cinema projection is exposed at the rate of 24 frames per second but usually projected at 48, each frame getting projected twice helping to minimise flicker. One exception to this was the 1986 National Film Board of Canada short film Momentum , which briefly experimented with both filming and projecting at 48 frame/s, in a process known as IMAX HD.

Depending upon available bandwidth and the amount of detail and movement in the image, the optimum format for video transfer is either 720p24 or 1080p24. When shown on television in PAL system countries, film must be projected at the rate of 25 frames per second by accelerating it by 4.1 percent. In NTSC standard countries, the projection rate is 30 frames per second, using a technique called 3:2 pull-down. One film frame is held for three video fields (1/20 of a second), and the next is held for two video fields (1/30 of a second) and then the process is repeated, thus achieving the correct film projection rate with two film frames shown in one twelfth of a second.

Older (pre-HDTV) recordings on video tape such as Betacam SP are often either in the form 480i60 or 576i50. These may be upconverted to a higher resolution format, but removing the interlace to match the common 720p format may distort the picture or require filtering which actually reduces the resolution of the final output.

Non-cinematic HDTV video recordings are recorded in either the 720p or the 1080i format. The format used is set by the broadcaster (if for television broadcast). In general, 720p is more accurate with fast action, because it progressively scans frames, instead of the 1080i, which uses interlaced fields and thus might degrade the resolution of fast images.

720p is used more for Internet distribution of high-definition video, because computer monitors progressively scan; 720p video has lower storage-decoding requirements than either the 1080i or the 1080p. This is also the medium for high-definition broadcasts around the world and 1080p is used for Blu-ray movies.

HD in filmmaking

Film as a medium has inherent limitations, such as difficulty of viewing footage while recording, and suffers other problems, caused by poor film development/processing, or poor monitoring systems. Given that there is increasing use of computer-generated or computer-altered imagery in movies, and that editing picture sequences is often done digitally, some directors have shot their movies using the HD format via high-end digital video cameras. While the quality of HD video is very high compared to SD video, and offers improved signal/noise ratios against comparable sensitivity film, film remains able to resolve more image detail than current HD video formats. In addition some films have a wider dynamic range (ability to resolve extremes of dark and light areas in a scene) than even the best HD cameras. Thus the most persuasive arguments for the use of HD are currently cost savings on film stock and the ease of transfer to editing systems for special effects.

Depending on the year and format in which a movie was filmed, the exposed image can vary greatly in size. Sizes range from as big as 24 mm × 36 mm for VistaVision/Technirama 8 perforation cameras (same as 35 mm still photo film) going down through 18 mm × 24 mm for Silent Films or Full Frame 4 perforations cameras to as small as 9 mm × 21 mm in Academy Sound Aperture cameras modified for the Techniscope 2 perforation format. Movies are also produced using other film gauges, including 70 mm films (22 mm × 48 mm) or the rarely used 55 mm and CINERAMA.

The four major film formats provide pixel resolutions (calculated from pixels per millimeter) roughly as follows:

In the process of making prints for exhibition, this negative is copied onto other film (negative → interpositive → internegative → print) causing the resolution to be reduced with each emulsion copying step and when the image passes through a lens (for example, on a projector). In many cases, the resolution can be reduced down to 1/6 of the original negative's resolution (or worse).[ citation needed ] Note that resolution values for 70 mm film are higher than those listed above.

HD on the World Wide Web/HD streaming

A number of online video streaming/on demand and digital download services offer HD video, among them YouTube, Vimeo, dailymotion, Amazon Video On Demand, Netflix Watch Instantly, Hulu, HBO Max, and others. Due to heavy compression, the image detail produced by these formats is far below that of broadcast HD, and often even inferior to DVD-Video (3-9 Mbit/s MP2) upscaled to the same image size. [7] The following is a chart of numerous online services and their HD offering:

World Wide Web HD resolutions

SourceCodecHighest resolution (W×H)Total bit rate/bandwidthVideo bit rateAudio bit rate
Amazon Video [note 1] VC-1 [8] 1280×720 [9] 2.5-6 Mbit/s
BBC iPlayer H.264 [10] 1280×720 [11] [note 2] 3.2 Mbit/s [10] 3 Mbit/s [10] 192 kbit/s [10]
blinkbox1280×7202.25 Mbit/s (SD) and 4.5 Mbit/s (HD)2.25 - 4.5 Mbit/s192 kbit/s
Blockbuster Online 1280×720
CBS.com/TV.com 1920×1080 [12] 3.5 Mbit/s and 2.5 Mbits (720p) [12]
Dacast VP6, H.264 [13] Unknown5 Mbit/s [14]
Hulu On2 Flash VP6 [15] 1280×720 [16] 2.5 Mbit/s [17]
iPlayerHD FLV, QuickTime H.264, MP4 H.264 [18] 1920×1080 [19] 2 Mbit/s and 5 Mbit/s [20]
iTunes/Apple TV QuickTime H.264 [21] 1920×1080 [21]
MetaCDN MPEG-4, FLV, OGG, WebM, 3GP [22] No Limit [23]
Netflix Watch Instantly VC-1 [24] 3840×2160 [25] 25 Mbit/s [26] 2.6 Mbit/s and 3.8 Mbit/s (1080p) [27]
PlayStation Video H.264/MPEG-4 AVC [28] 1920×1080 [28] 8 Mbit/s [28] 256 kbit/s [28]
StreamShark H.264, FLV, OGV, WebM, VP8, VP9 [29] 1920×1080 [30]
Vimeo H.264 [31] 1920×1080 [32] 4 Mbit/s [33] 320 kbit/s [34]
Vudu H.264 [35] 1920×1080 [36] 4.5 Mbit/s [37]
Xbox Video [note 3] 1920×1080 [38]
YouTube H.264/MPEG-4 AVC, VP9, AV1 7680×4320
StreamHash Mp4 [39] 1920×1080 [40]
  1. Formerly "Amazon Unbox", which now refers to a video player software, and later "Amazon Video on Demand".
  2. During live events "BBC iPlayer" streams have a resolution of 1024×576.
  3. Formerly "Xbox Live Marketplace Video Store", but replaced by "Xbox Video" in 2012.

HD in video surveillance

Since the late 2000’s a considerably large number of security camera manufacturers have started to produce HD cameras. The need for high resolution, color fidelity, and frame rate is acute for surveillance purposes to ensure that the quality of the video output is of an acceptable standard that can be used both for preventative surveillance as well as for evidence purposes. [41]

Although, HD cameras can be highly effective indoor, special industries with outdoor environments called for a need to produce much higher resolutions for effective coverage. The ever-evolving image sensor technologies allowed manufacturers to develop cameras with 10-20 MP resolutions, which therefore have become efficient instruments to monitor larger areas.

In order to further increase the resolution of security cameras, some manufacturers developed multi-sensor cameras. Within these devices several sensor-lens combinations produce the images, which are later merged together during image processing. [42] These security cameras are able to deliver even hundreds of megapixels with motion picture frame rate.

Such high resolutions, however, requires special recording, storage and also video stream display technologies.

HD in video gaming

Both the PlayStation 3 game console and Xbox 360 can output native 1080p through HDMI or component cables, but the systems have few games which appear in 1080p; most games only run natively at 720p or less, but can be upscaled to 1080p. The Wii can output up to 480p (enhanced-definition) over component, which while not HD, is very useful for HDTVs as it avoids de-interlacing artifacts. The Wii can also output 576i and 576p in PAL regions.

Visually, native 1080p produces a sharper and clearer picture compared to upscaled 1080p. Though only a handful of games available have the native resolution of 1080p, all games on the Xbox 360 and PlayStation 3 can be upscaled up to this resolution. Xbox 360 and PlayStation 3 games are labeled with the output resolution on the back of their packaging, although on Xbox 360 this indicates the resolution it will upscale to, not the native resolution of the game.

Generally, PC games are only limited by the display's resolution size. Drivers are capable of supporting very high resolutions, depending on the chipset of the video card. Many game engines support resolutions of 5760×1080 or 5760×1200 (typically achieved with three 1080p displays in a multi-monitor setup) and nearly all will display 1080p at minimum. 1440p and 4K are typically supported resolutions for PC gaming as well.

Currently all consoles, Nintendo's Wii U and Nintendo Switch, Microsoft's Xbox One, and Sony's PlayStation 4 display games 1080p natively. The Nintendo Switch is an unusual case, due to its hybrid nature as both a home console and a handheld: the built-in screen displays games at 720p maximum, but the console can natively display imagery at 1080p when docked. PlayStation 4 is able to display in 4K, though strictly only for displaying pictures.

See also

Related Research Articles

Video Electronic moving image

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) systems which were later replaced by flat panel displays of several types.

DV Magnetic tape-based consumer and broadcast videocassette format for camcorders and video codec

DV is a format for storing digital videos. It was launched in 1995 with joint efforts of leading producers of video camera recorders. It is the foundation of the MiniDV format.

Interlaced video Technique for doubling the perceived frame rate of a video display

Interlaced video is a technique for doubling the perceived frame rate of a video display without consuming extra bandwidth. The interlaced signal contains two fields of a video frame captured consecutively. This enhances motion perception to the viewer, and reduces flicker by taking advantage of the phi phenomenon.

Telecine Process for broadcasting content stored on film stock

Telecine is the process of transferring motion picture film into video and is performed in a color suite. The term is also used to refer to the equipment used in the post-production process. Telecine enables a motion picture, captured originally on film stock, to be viewed with standard video equipment, such as television sets, video cassette recorders (VCR), DVD, Blu-ray Disc or computers. Initially, this allowed television broadcasters to produce programmes using film, usually 16mm stock, but transmit them in the same format, and quality, as other forms of television production. Furthermore, telecine allows film producers, television producers and film distributors working in the film industry to release their products on video and allows producers to use video production equipment to complete their filmmaking projects. Within the film industry, it is also referred to as a TK, because TC is already used to designate timecode. Motion picture film scanners are similar to telecines.

Advanced Television Systems Committee (ATSC) standards are an American set of standards for digital television transmission over terrestrial, cable and satellite networks. It is largely a replacement for the analog NTSC standard and, like that standard, is used mostly in the United States, Mexico, Canada, and South Korea. Several former NTSC users, in particular Japan, have not used ATSC during their digital television transition, because they adopted their own system called ISDB.

Serial digital interface

Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE in 1989. For example, ITU-R BT.656 and SMPTE 259M define digital video interfaces used for broadcast-grade video. A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s.

Display resolution Number of distinct pixels in each dimension that can be displayed

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

HD-MAC was a proposed broadcast television systems standard by the European Commission in 1986, a part of Eureka 95 project. It is an early attempt by the EEC to provide High-definition television (HDTV) in Europe. It is a complex mix of analogue signal, multiplexed with digital sound, and assistance data for decoding (DATV). The video signal was encoded with a modified D2-MAC encoder.

D5 HD Magnetic tape-based videocassette format

D-5 is a professional digital video format introduced by Panasonic in 1994. Like Sony's D-1 (8-bit), it is an uncompressed digital component system (10-bit), but uses the same half-inch tapes as Panasonic's digital composite D-3 format. A 120 min. D-3 tape will record 60 min. in D-5/D-5 HD mode. D-5 standard definition decks can be retrofitted to record high definition with the use of an external HD input/output box. The HD deck conversion does not allow for any error correction that exists on standard definition recordings, as the full bandwidth of the tape is required for the HD recording.

HDV Magnetic tape-based HD videocassette format for camcorders

HDV is a format for recording of high-definition video on DV cassette tape. The format was originally developed by JVC and supported by Sony, Canon, and Sharp. The four companies formed the HDV Consortium in September 2003.

720p Video resolution

720p is a progressive HDTV signal format with 720 horizontal lines and an aspect ratio (AR) of 16:9, normally known as widescreen HDTV (1.78:1). All major HDTV broadcasting standards include a 720p format, which has a resolution of 1280×720; however, there are other formats, including HDV Playback and AVCHD for camcorders, that use 720p images with the standard HDTV resolution. The frame rate is standards-dependent, and for conventional broadcasting appears in 50 progressive frames per second in former PAL/SECAM countries, and 59.94 frames per second in former NTSC countries.

1080i is a combination of frame resolution and scan type. 1080i is used in high-definition television (HDTV) and high-definition video. The number "1080" refers to the number of horizontal lines on the screen. The "i" is an abbreviation for "interlaced"; this indicates that only the odd lines, then the even lines of each frame are drawn alternately, so that only half the number of actual image frames are used to produce video. A related display resolution is 1080p, which also has 1080 lines of resolution; the "p" refers to progressive scan, which indicates that the lines of resolution for each frame are "drawn" on the screen in sequence.

576p is the shorthand name for a video display resolution. The p stands for progressive scan, i.e. non-interlaced, the 576 for a vertical resolution of 576 pixels, usually with a horizontal resolution of 768 or 1024, depending of the relationship aspect. The 576p quality was decided as the default quality when converting from VHS to digital. 576p is considered standard definition for PAL video. The frame rate can be given explicitly after the letter.

Film-out is the process in the computer graphics, video production and filmmaking disciplines of transferring images or animation from videotape or digital files to a traditional film print. "Film-out" is a broad term that encompasses the conversion of frame rates, color correction, as well as the actual printing, also called scannior recording.

1080p Video mode

1080p is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the screen vertically; the p stands for progressive scan, i.e. non-interlaced. The term usually assumes a widescreen aspect ratio of 16:9, implying a resolution of 2.1 megapixels. It is often marketed as Full HD or FHD, to contrast 1080p with 720p resolution screens. Although 1080p is sometimes informally referred to as 2K, these terms reflect two distinct technical standards, with differences including resolution and aspect ratio.

Progressive segmented Frame is a scheme designed to acquire, store, modify, and distribute progressive scan video using interlaced equipment.

In video, a field is one of the many still images which are displayed sequentially to create the impression of motion on the screen. Two fields comprise one video frame. When the fields are displayed on a video monitor they are "interlaced" so that the content of one field will be used on all of the odd-numbered lines on the screen and the other field will be displayed on the even lines. Converting fields to a still frame image requires a process called deinterlacing, in which the missing lines are duplicated or interpolated to recreate the information that would have been contained in the discarded field. Since each field contains only half of the information of a full frame, however, deinterlaced images do not have the resolution of a full frame.

High-definition television (HD) describes a television system providing an image resolution of substantially higher resolution than the previous generation of technologies. The term has been used since 1936, but in modern times refers to the generation following standard-definition television (SDTV), often abbreviated to HDTV or HD-TV. It is the current de facto standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television and Blu-ray Discs.

References

  1. Lee, Jack (2005). Scalable Continuous Media Streaming Systems: Architecture, Design, Analysis and Implementation. John Wiley & Sons. p. 25. ISBN   9780470857649.
  2. 1 2 Shishikui, Yoshiaki; Nakanishi, Hiroshi; Imaizumi, Hiroyuki (October 26–28, 1993). "An HDTV Coding Scheme using Adaptive-Dimension DCT". Signal Processing of HDTV: Proceedings of the International Workshop on HDTV '93, Ottawa, Canada. Elsevier: 611–618. doi:10.1016/B978-0-444-81844-7.50072-3. ISBN   9781483298511.
  3. Ahmed, Nasir (January 1991). "How I Came Up With the Discrete Cosine Transform". Digital Signal Processing . 1 (1): 4–5. doi:10.1016/1051-2004(91)90086-Z.
  4. Ghanbari, Mohammed (2003). Standard Codecs: Image Compression to Advanced Video Coding. Institution of Engineering and Technology. pp. 1–2. ISBN   9780852967102.
  5. Li, Jian Ping (2006). Proceedings of the International Computer Conference 2006 on Wavelet Active Media Technology and Information Processing: Chongqing, China, 29-31 August 2006. World Scientific. p. 847. ISBN   9789812709998.
  6. Lea, William (1994). Video on demand: Research Paper 94/68. 9 May 1994: House of Commons Library. Archived from the original on 20 September 2019. Retrieved 20 September 2019.CS1 maint: location (link)
  7. "Why HD movie downloads are a big lie". Ziff-Davis. 2007-05-31. Retrieved 2010-06-28.
  8. "Amazon.com -- News Release". 2006-09-07. Retrieved 2009-10-16. ...using the ultra-efficient VC-1 Advanced Profile codec.
  9. "Amazon.com: Help > Digital Products > Amazon Video On Demand" . Retrieved 2009-10-16. Our 2.5 Mbps HD files are streamed in high-quality 720p resolution.
  10. 1 2 3 4 "What do I need to know about HD on BBC iPlayer?". BBC. We use h.264 with a bitrate of 3.2Mbps and 192kbps audio
  11. "What do I need to know about HD on BBC iPlayer?". BBC. In order to be classed as "true" high definition, we encode in at least 1280x720 resolution, or 720p.
  12. 1 2 "CBS.com - HD Video - System Requirements". CBS.com. Retrieved 2009-10-16.
  13. "Streaming Protocols for Flash, RTMP, H.264 & VP6". Dacast. Retrieved 2011-11-30.
  14. "Live Streaming Solution". Dacast. Retrieved 2011-11-30.
  15. "Hulu - About". Hulu. Archived from the original on 2009-10-26. Retrieved 2009-10-16. Hulu videos are streamed as Flash video files (FLV files). These files are encoded using the On2 Flash VP6 codec...
  16. "Hulu - About". Hulu. Archived from the original on 2009-10-26. Retrieved 2009-10-16. HD videos on Hulu are streamed at 1280 x 720 resolution.
  17. "Hulu - About". Hulu. Archived from the original on 2009-10-26. Retrieved 2009-10-16. Hulu currently supports four different streams including 480kbps, 700kbps, 1,000kbps (an H.264 encode that is not on On2 VP6) and 2.5Mbps.
  18. "Learn More About iPlayerHD". iPlayerHD.com. Retrieved 2009-12-16. We support FLV and H264 as MOV and MP4.
  19. "Learn More About iPlayerHD". iPlayerHD.com. Retrieved 2009-12-16. iPlayerHD will deliver video at any resolution including SD 720 x 480, and HD 480, 720 and 1080.
  20. "Learn More About iPlayerHD". iPlayerHD.com. Retrieved 2009-12-16. Your video will be delivered at bit rates up to 5,000 kbps or 5 mbps.
  21. 1 2 "Video quality reference table from best to worst".
  22. "MetaCDN Technical Specs". MetaCDN. Archived from the original on 2014-08-20. Retrieved 2014-08-20.
  23. "Live Streaming Service". MetaCDN. Retrieved 2014-08-20.
  24. Hunt, Neil (2008-11-06). "The Official Netflix Blog: Encoding for streaming". Netflix. Retrieved 2009-10-16. ...but settled on second-generation HD encodes with VC1AP
  25. "You Can Now Stream 4K Netflix on Windows 10". MakeUseOf. Retrieved 2016-11-26.
  26. "Internet Connection Speed Recommendations". Help Center. Retrieved 2016-11-26.
  27. Hunt, Neil (2008-11-06). "The Official Netflix Blog: Encoding for streaming". Netflix. Retrieved 2009-10-16. second-generation HD encodes ... at 2600kbps and 3800kbps
  28. 1 2 3 4 Dipert, Brian (2008-07-17). "Online Video Content Distribution: Sony's PlayStation 3 Enters The Ring (Albeit With A Sound-Hampered Hand Tied Behind Its Back)". EDN. Archived from the original on 2008-09-07. Retrieved 2009-10-16.
  29. "StreamShark Technical Specifications". StreamShark. Retrieved 2015-10-08.
  30. "Live Streaming Service". StreamShark. Retrieved 2015-10-08.
  31. "Vimeo - Compression guidelines on Vimeo". Vimeo. Retrieved 2009-10-16. For best results, we recommend using H.264 (sometimes referred to as MP4) for the video codec and AAC (short for Advanced Audio Codec) for the audio codec.[ permanent dead link ]
  32. "Vimeo - Compression guidelines on Vimeo". Vimeo. Retrieved 2009-10-16. 640x480 for standard definition 4:3 video, 853x480 for widescreen DV, or 1920x1080 for high definition.[ permanent dead link ]
  33. "Vimeo - Compression guidelines on Vimeo". Vimeo. Retrieved 2009-10-16. Use 2000 kbits/sec for standard definition 4:3 video, 3000 kbits/sec for widescreen DV, or 5000 kbits/sec for high definition footage.[ permanent dead link ]
  34. "Vimeo - Compression guidelines on Vimeo". Vimeo. Retrieved 2009-10-16. You'll want to set the bit rate to 320 kbps and the sample rate to 44.100 kHz.[ permanent dead link ]
  35. Sturgeon, Shane (2008-02-21). "Showdown: Apple TV vs. VUDU". HDTV Magazine. Archived from the original on 2008-05-12. Retrieved 2009-11-05. ...all HD content is ... encoded with H.264 High Profile
  36. "Streaming Requirements". Vudu. Archived from the original on 2010-01-29. Retrieved 2010-02-09. HDX (1080p)
  37. "Streaming Requirements". Vudu. Archived from the original on 2010-01-29. Retrieved 2010-02-09. HDX (1080p) requires 4500 kbps
  38. "XBox Video". Microsoft. Archived from the original on 27 October 2012. Retrieved 8 November 2012.
  39. "StreamHash Version". StreamHash. Retrieved 2018-09-06.
  40. "Video Streaming Software". StreamHash. Retrieved 2017-01-02.
  41. "High Megapixel Cameras – It's Not Just About Quality". SecurityMagazine. Retrieved 2020-01-28.
  42. "3 Ways Multi-Sensor Cameras Alter the Video Surveillance Landscape". SecurityInfoWatch. Retrieved 2018-06-15.

Further reading