Connection-oriented communication

Last updated

In telecommunications and computer networking, connection-oriented communication is a communication protocol where a communication session or a semi-permanent connection is established before any useful data can be transferred. The established connection ensures that data is delivered in the correct order to the upper communication layer. The alternative is called connectionless communication , such as the datagram mode communication used by Internet Protocol (IP) and User Datagram Protocol (UDP), where data may be delivered out of order, since different network packets are routed independently and may be delivered over different paths.

Contents

Connection-oriented communication may be implemented with a circuit switched connection, or a packet-mode virtual circuit connection. In the latter case, it may use either a transport layer virtual circuit protocol such as the Transmission Control Protocol (TCP) protocol, allowing data to be delivered in order. Although the lower-layer switching is connectionless, or it may be a data link layer or network layer switching mode, where all data packets belonging to the same traffic stream are delivered over the same path, and traffic flows are identified by some connection identifier reducing the overhead of routing decisions on a packet-by-packet basis for the network.

Connection-oriented protocol services are often, but not always, reliable network services that provide acknowledgment after successful delivery and automatic repeat request functions in case of missing or corrupted data. Asynchronous Transfer Mode (ATM), Frame Relay and Multiprotocol Label Switching (MPLS) are examples of connection-oriented unreliable protocols.[ citation needed ] Simple Mail Transfer Protocol (SMTP) is an example of a connection-oriented protocol in which, if a message is not delivered, an error report is sent to the sender, making it a reliable protocol. Because they can keep track of a conversation, connection-oriented protocols are sometimes described as stateful.

Circuit switching

Circuit switched communication, for example the public switched telephone network, ISDN, SONET/SDH and optical mesh networks, are intrinsically connection-oriented communications systems. Circuit-mode communication provides guarantees that constant bandwidth will be available and bit stream or byte stream data will arrive in order with constant delay. The switches are reconfigured during a circuit establishment phase.

Virtual circuit switching

Packet switched communication may also be connection-oriented, which is called virtual circuit mode communication. Due to the packet switching, the communication may suffer from variable bit rate and delay, due to varying traffic load and packet queue lengths. Connection-oriented communication does not necessarily imply reliability.

Transport layer

Connection-oriented transport layer protocols provide connection-oriented communications over connectionless communications systems. A connection-oriented transport layer protocol, such as TCP, may be based on a connectionless network layer protocol (such as IP), but still achieves in-order delivery of a byte-stream, by means of segment sequence numbering on the sender side, packet buffering and data packet reordering on the receiver side.

In a connection-oriented packet-switched data-link or network-layer protocol, all data is sent over the same path during a communication session. Rather than using complete routing information for each packet (source and destination addresses) as in connectionless datagram switching such as conventional IP routers, a connection-oriented protocol identifies traffic flows only by a channel or data stream number, often denoted virtual circuit identifier (VCI). Routing information may be provided to the network nodes during the connection establishment phase, where the VCI is defined in tables in each node. Thus, the actual packet switching and data transfer can be taken care of by fast hardware, as opposed to slower software-based routing. Typically, this connection identifier is a small integer (for example, 10 bits for Frame Relay and 24 bits for ATM). This makes network switches substantially faster.

ATM and Frame Relay, for example, are both examples of connection-oriented, unreliable data link layer protocols. Reliable connectionless protocols exist as well, for example AX.25 network layer protocol when it passes data in I-frames, but this combination is rare, and reliable-connectionless is uncommon in modern networks.

Some connection-oriented protocols have been designed or altered to accommodate both connection-oriented and connectionless data. [1]

Examples

Examples of connection-oriented packet-mode communication, i.e. virtual circuit mode communication:

Related Research Articles

<span class="mw-page-title-main">Asynchronous Transfer Mode</span> Digital telecommunications protocol for voice, video, and data

Asynchronous Transfer Mode (ATM) is a telecommunications standard defined by the American National Standards Institute and ITU-T for digital transmission of multiple types of traffic. ATM was developed to meet the needs of the Broadband Integrated Services Digital Network as defined in the late 1980s, and designed to integrate telecommunication networks. It can handle both traditional high-throughput data traffic and real-time, low-latency content such as telephony (voice) and video. ATM provides functionality that uses features of circuit switching and packet switching networks by using asynchronous time-division multiplexing. ATM was seen in the 1990s as a competitor to Ethernet and networks carrying IP traffic as it was faster and was designed with quality-of-service in mind, but it fell out of favor once Ethernet reached speeds of 1 gigabits per second.

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

<span class="mw-page-title-main">Frame Relay</span> Wide area network technology

Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

Connectionless communication, often referred to as CL-mode communication, is a data transmission method used in packet switching networks, using data packets that are frequently called datagrams, in which each data unit is individually addressed and routed based on information carried in each unit, rather than in the setup information of a prearranged, fixed data channel as in connection-oriented communication. Connectionless protocols are usually described as stateless protocols, the Internet Protocol (IP) and User Datagram Protocol (UDP) are examples.

A datagram is a basic transfer unit associated with a packet-switched network. Datagrams are typically structured in header and payload sections. Datagrams provide a connectionless communication service across a packet-switched network. The delivery, arrival time, and order of arrival of datagrams need not be guaranteed by the network.

<span class="mw-page-title-main">Protocol data unit</span> Unit of information transmitted over a computer network

In telecommunications, a protocol data unit (PDU) is a single unit of information transmitted among peer entities of a computer network. It is composed of protocol-specific control information and user data. In the layered architectures of communication protocol stacks, each layer implements protocols tailored to the specific type or mode of data exchange.

A virtual circuit (VC) is a means of transporting data over a data network, based on packet switching and in which a connection is first established across the network between two endpoints. The network, rather than having a fixed data rate reservation per connection as in circuit switching, takes advantage of the statistical multiplexing on its transmission links, an intrinsic feature of packet switching.

<span class="mw-page-title-main">X.25</span> Standard protocol suite for packet switched wide area network (WAN) communication

X.25 is an ITU-T standard protocol suite for packet-switched data communication in wide area networks (WAN). It was originally defined by the International Telegraph and Telephone Consultative Committee in a series of drafts and finalized in a publication known as The Orange Book in 1976.

<span class="mw-page-title-main">Transport layer</span> Layer in the OSI and TCP/IP models providing host-to-host communication services for applications

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

The use of Asynchronous Transfer Mode (ATM) technology and services creates the need for an adaptation layer in order to support information transfer protocols, which are not based on ATM. This adaptation layer defines how to segment higher-layer packets into cells and the reassembly of these packets. Additionally, it defines how to handle various transmission aspects in the ATM layer.

ATM Adaptation Layer 5 (AAL5) is an ATM adaptation layer used to send variable-length packets up to 65,535 octets in size across an Asynchronous Transfer Mode (ATM) network.

<span class="mw-page-title-main">Statistical time-division multiplexing</span>

Statistical multiplexing is a type of communication link sharing, very similar to dynamic bandwidth allocation (DBA). In statistical multiplexing, a communication channel is divided into an arbitrary number of variable bitrate digital channels or data streams. The link sharing is adapted to the instantaneous traffic demands of the data streams that are transferred over each channel. This is an alternative to creating a fixed sharing of a link, such as in general time division multiplexing (TDM) and frequency division multiplexing (FDM). When performed correctly, statistical multiplexing can provide a link utilization improvement, called the statistical multiplexing gain.

In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum.

In computer networking, an edge device is a device that provides an entry point into enterprise or service provider core networks. Examples include routers, routing switches, integrated access devices (IADs), multiplexers, and a variety of metropolitan area network (MAN) and wide area network (WAN) access devices. Edge devices also provide connections into carrier and service provider networks. An edge device that connects a local area network to a high speed switch or backbone may be called an edge concentrator.

A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.

Multiprotocol Encapsulation over ATM is specified in RFC 2684. It defines two mechanisms for identifying the protocol carried in ATM Adaptation Layer 5 (AAL5) frames. It replaces RFC 1483, a standard data link access protocol supported by DSL modems.

References

  1. Ramos-Escano; et al. (June 2, 2005). "US Patent Application Publication 2005/0117529 A1" . Retrieved May 19, 2008.