Vivaldi antenna

Last updated

A Vivaldi antenna or Vivaldi aerial [1] or tapered slot antenna [2] is a co-planar broadband-antenna, which can be made from a solid piece of sheet metal, a printed circuit board, or from a dielectric plate metalized on one or both sides.

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Printed circuit board board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.

Dielectric electrically poorly conducting or non-conducting, non-metallic substance of which charge carriers are generally not free to move

A dielectric is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field.

Pattern of a Vivaldi antenna, made from double-sided printed circuit board material Vivaldiantenna.jpg
Pattern of a Vivaldi antenna, made from double-sided printed circuit board material

The feeding line excites an open space via a microstrip line or coaxial cable, and may be terminated with a sector-shaped area or a direct coaxial connection. From the open space area the energy reaches an exponentially tapered pattern via a symmetrical slot line.

Feed line

In a radio antenna, the feed line (feedline), or feeder, is the cable or other transmission line that connects the antenna with the radio transmitter or receiver. In a transmitting antenna, it feeds the radio frequency (RF) current from the transmitter to the antenna, where it is radiated as radio waves. In a receiving antenna it transfers the tiny RF voltage induced in the antenna by the radio wave to the receiver. In order to carry RF current efficiently, feed lines are made of specialized types of cable called transmission line. The most widely used types of feed line are coaxial cable, twin-lead, ladder line, and at microwave frequencies, waveguide.

Coaxial cable A type of electrical cable with an inner conductor surrounded by concentric insulating layer and conducting shield

Coaxial cable, or coax, is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English engineer and mathematician Oliver Heaviside, who patented the design in 1880.

Circular sector

A circular sector or circle sector, is the portion of a disk enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle in radians, the radius of the circle, and is the arc length of the minor sector.

A one-piece sheet metal vivaldi antenna undergoing testing in an anechoic chamber Vivaldi-Antenna-Testing-In-Chamber.jpg
A one-piece sheet metal vivaldi antenna undergoing testing in an anechoic chamber

Vivaldi antennas can be made for linear polarized waves or – using two devices arranged in orthogonal direction – for transmitting / receiving both polarization orientations.

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. See polarization and plane of polarization for more information.

If fed with 90-degree phase-shifted signals, orthogonal devices can transmit/receive circular-oriented electromagnetic waves.

Circular polarization

In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electric field of the wave has a constant magnitude but its direction rotates with time at a steady rate in a plane perpendicular to the direction of the wave.

Vivaldi antennas are useful for any frequency, as all antennas are scalable in size for use at any frequency. Printed circuit technology makes this type antenna cost effective at microwave frequencies exceeding 1 GHz.

Microwave form of electromagnetic radiation

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

This inexpensive Vivaldi antenna is etched upon a printed circuit board and fed with a soldered-on coaxial cable and SMA connector. PCB Vivaldi Antenna.jpg
This inexpensive Vivaldi antenna is etched upon a printed circuit board and fed with a soldered-on coaxial cable and SMA connector.

Advantages of Vivaldi antennas are their broadband characteristics (suitable for ultra-wideband signals [3] ), their easy manufacturing process using common methods for PCB production, and their easy impedance matching to the feeding line using microstrip line modeling methods.

Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precision locating and tracking applications.

Impedance matching practice in electronics

In electronics, impedance matching is the practice of designing the input impedance of an electrical load or the output impedance of its corresponding signal source to maximize the power transfer or minimize signal reflection from the load.

The MWEE collection of EM simulation benchmarks includes a Vivaldi antenna. [4] [5] [6] [7] [8] [9]

Related Research Articles

Circulator passive non-reciprocal three- or four-port device, in which a microwave or radio frequency signal entering any port is transmitted to the next port in rotation (only)

A circulator is a passive non-reciprocal three- or four-port device, in which a microwave or radio frequency signal entering any port is transmitted to the next port in rotation (only). A port in this context is a point where an external waveguide or transmission line, connects to the device. For a three-port circulator, a signal applied to port 1 only comes out of port 2; a signal applied to port 2 only comes out of port 3; a signal applied to port 3 only comes out of port 1, so to up to a phase-factor, the scattering matrix for an ideal three-port circulator is

Electrical length

In telecommunications and electrical engineering, electrical length refers to the length of an electrical conductor in terms of the phase shift introduced by transmission over that conductor at some frequency.

Parabolic antenna type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct the radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently-sized reflectors can be used.

Microstrip antenna

In telecommunication, a microstrip antenna usually means an antenna fabricated using microstrip techniques on a printed circuit board (PCB). It is a kind of Internal Antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes on the surface of a PCB, with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil microstrip transmission lines. The radio frequency current is applied between the antenna and ground plane. Microstrip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas.

Orthomode transducer

An orthomode transducer (OMT) is a waveguide component. It is commonly referred to as a polarisation duplexer. Orthomode transducers serve either to combine or to separate two orthogonally polarized microwave signal paths. One of the paths forms the uplink, which is transmitted over the same waveguide as the received signal path, or downlink path. Such a device may be part of a VSAT antenna feed or a terrestrial microwave radio feed; for example, OMTs are often used with a feed horn to isolate orthogonal polarizations of a signal and to transfer transmit and receive signals to different ports.

Discone antenna

A discone antenna is a version of a biconical antenna in which one of the cones is replaced by a disc. It is usually mounted vertically, with the disc at the top and the cone beneath.

Stripline transverse electromagnetic (TEM) transmission line

Stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line.

A bias tee is a three-port network used for setting the DC bias point of some electronic components without disturbing other components. The bias tee is a diplexer. The low-frequency port is used to set the bias; the high-frequency port passes the radio-frequency signals but blocks the biasing levels; the combined port connects to the device, which sees both the bias and RF. It is called a tee because the 3 ports are often arranged in the shape of a T.

Radio-frequency engineering, or RF engineering, is a subset of electrical and electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or utilize signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.

Phase shift module

A phase shift module is a microwave network module which provides a controllable phase shift of the RF signal. Phase shifters are used in phased arrays.

A shortwave broadband antenna is a radio antenna, that without adjustment, can be used for transmission of a shortwave radio channel chosen from greater part of the shortwave radio spectrum. Some shortwave broadband antennas can even be used on the whole shortwave radio spectrum (1.6-30 MHz) which consist of the upper part of medium frequency (1.6-3 MHz) and the whole of high frequency (3-30 MHz). A true shortwave broadband antenna will work continuously across most of, if not all of the shortwave spectrum with good radiation efficiency and minimal compromise of the radiation pattern.

Metamaterial antenna

Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.

Polarization-division multiplexing

Polarization-division multiplexing (PDM) is a physical layer method for multiplexing signals carried on electromagnetic waves, allowing two channels of information to be transmitted on the same carrier frequency by using waves of two orthogonal polarization states. It is used in microwave links such as satellite television downlinks to double the bandwidth by using two orthogonally polarized feed antennas in satellite dishes. It is also used in fiber optic communication by transmitting separate left and right circularly polarized light beams through the same optical fiber.

Planar transmission line Transmission lines with flat ribbon-like conducting or dielectric lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

Inverted-F antenna

An inverted-F antenna is a type of antenna used in wireless communication. It consists of a monopole antenna running parallel to a ground plane and grounded at one end. The antenna is fed from an intermediate point a distance from the grounded end. The design has two advantages over a simple monopole: the antenna is shorter and more compact, and the impedance matching can be controlled by the designer without the need for extraneous matching components.

The Synchronous Impulse Reconstruction (SIRE) radar is a multiple-input, multiple-output (MIMO) radar system designed by the Army Research Laboratory (ARL) to detect landmines and improvised explosive devices (IEDs). It consists of a low frequency, impulse-based ultra-wideband (UWB) radar that uses 16 receivers with 2 transmitters at the ends of the 2 meter-wide receive array that send alternating, orthogonal waveforms into the ground and return signals reflected from targets in a given area. The SIRE radar system comes mounted on top of a vehicle and receives signals that form images that uncover up to 33 meters in the direction that the transmitters are facing. It is able to collect and process data as part of an affordable and lightweight package due to slow yet inexpensive analog-to-digital (A/D) converters that sample the wide bandwidth of radar signals. It uses a GPS and Augmented Reality (AR) technology in conjunction with camera to create a live video stream with a more comprehensive visual display of the targets.


  1. Peter J. Gibson: The Vivaldi Aerial, 9th European Microwave Conference Proceedings, Brighton, 1979, p. 101–105.
  2. Milligan, Thomas (2005). Modern antenna design (Second ed.). Hoboken, N.J.: John Wiley & Sons, Inc. p. 512. ISBN   9780471457763. OCLC   85820949.
  3. De Oliveira, A. M.; Perotoni, M. B.; Kofuji, S. T.; Justo, J. F. (2015). "A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern". IEEE Antennas Wireless Propag. Lett. 14: 1334. doi:10.1109/LAWP.2015.2404875.
  4. "Vivaldi Antenna". CST Computer Simulation Technology.
  5. "The 2000 CAD Benchmark". Microwave Engineering Europe.
  6. "Design An X-Band Vivaldi Antenna". Microwaves and RF.
  7. "Characterization of Vivaldi antennas utilizing a microstrip-to-slotline transition" (PDF).
  8. "Dual-orthogonal polarized Vivaldi Antenna for Ultra Wideband Applications".
  9. "Vivaldi antenna".