Stripline

Last updated
Cross-section diagram of stripline geometry. Central conductor (A) is sandwiched between ground planes (B and D). Structure is supported by dielectric (C). Stripline geometry.svg
Cross-section diagram of stripline geometry. Central conductor (A) is sandwiched between ground planes (B and D). Structure is supported by dielectric (C).

In electronics, stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line.

Contents

Description

A stripline circuit uses a flat strip of metal which is sandwiched between two parallel ground planes. The insulating material of the substrate forms a dielectric. The width of the strip, the thickness of the substrate and the relative permittivity of the substrate determine the characteristic impedance of the strip which is a transmission line. As shown in the diagram, the central conductor need not be equally spaced between the ground planes. In the general case, the dielectric material may be different above and below the central conductor.

To prevent the propagation of unwanted modes, the two ground planes must be shorted together. This is commonly achieved by a row of vias running parallel to the strip on each side.

Like coaxial cable, stripline is non-dispersive, and has no cutoff frequency. Good isolation between adjacent traces can be achieved more easily than with microstrip. Stripline provides for enhanced noise immunity against the propagation of radiated RF emissions, at the expense of slower propagation speeds when compared to microstrip lines. The effective permittivity of striplines equals the relative permittivity of the dielectric substrate because of wave propagation only in the substrate. Hence striplines have higher effective permittivity in comparison to microstrip lines, which in turn reduces wave propagation speed (see also velocity factor) according to

History

Stripline, now used as a generic term, was originally a proprietary brand of Airborne Instruments Laboratory Inc. (AIL). The version as produced by AIL was essentially air insulated (air stripline) with just a thin layer of dielectric material - just enough to support the conducting strip. The conductor was printed on both sides of the dielectric. The more familiar version with the space between the two plates completely filled with dielectric was originally produced by Sanders Associates who marketed it under the brand name of triplate. [1]

Stripline was initially preferred to its rival, microstrip, made by ITT. Transmission in stripline is purely TEM mode and consequently there is no dispersion (provided that the dielectric of substrate is not itself dispersive). Also, discontinuity elements on the line (gaps, stubs, posts etc) present a purely reactive impedance. This is not the case with microstrip; the differing dielectrics above and below the strip result in longitudinal non-TEM components to the wave. This results in dispersion and discontinuity elements have a resistive component causing them to radiate. In the 1950s Eugene Fubini, at the time working for AIL, jokingly suggested that a microstrip dipole would make a good antenna. This was intended to highlight the drawbacks of microstrip, but the microstrip patch antenna has become the most popular design of antenna in mobile devices. [2] Stripline remained in the ascendent for its performance advantages through the 1950s and 1960s but eventually microstrip won out, especially in mass produced items, because it was easier to assemble and the lack of an upper dielectric meant that components were easier to access and adjust. As the complexity of printed circuits increased, this convenience issue became more important until today microstrip is the dominant planar technology. Miniaturisation also leads to favouring microstrip because its disadvantages are not so severe in a miniaturised circuit. However, stripline is still chosen where operation over a wide band is required. [3]

Comparison to microstrip

Microstrip is similar to stripline transmission line except that the microstrip is not sandwiched, it is on a surface layer, above a ground plane. Stripline is more expensive to fabricate than microstrip, and because of the second groundplane, the strip widths are much narrower for a given impedance and board thickness than for microstrip.

Characteristic Impedance

An accurate closed form equation for the characteristic impedance of a stripline with a centered conductor has been reported as [4]

Where:

Note that when the conductor thickness is small, T<<W and T<<H, the equations simplify significantly.

Where:

The accuracy of the formula is claimed to be better than 1% for W/(H-T) > .05 and T< 0.025.

See also

Related Research Articles

<span class="mw-page-title-main">Circulator</span> Electronic circuit in which a signal entering any port exits at the next port

In electrical engineering, a circulator is a passive, non-reciprocal three- or four-port device that only allows a microwave or radio-frequency (RF) signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where an external waveguide or transmission line, such as a microstrip line or a coaxial cable, connects to the device. For a three-port circulator, a signal applied to port 1 only comes out of port 2; a signal applied to port 2 only comes out of port 3; a signal applied to port 3 only comes out of port 1. An ideal three-port circulator thus has the following scattering matrix:

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Waveguide</span> Structure that guides waves efficiently

A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency waveguides which direct electromagnetic waves other than light like radio waves.

The wave impedance of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields. For a transverse-electric-magnetic (TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol Z is used to represent it and it is expressed in units of ohms. The symbol η (eta) may be used instead of Z for wave impedance to avoid confusion with electrical impedance.

<span class="mw-page-title-main">Coaxial cable</span> Electrical cable type with concentric inner conductor, insulator, and conducting shield

Coaxial cable, or coax, is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.

<span class="mw-page-title-main">Poynting vector</span> Measure of directional electromagnetic energy flux

In physics, the Poynting vector represents the directional energy flux or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m2); kg/s3 in base SI units. It is named after its discoverer John Henry Poynting who first derived it in 1884. Nikolay Umov is also credited with formulating the concept. Oliver Heaviside also discovered it independently in the more general form that recognises the freedom of adding the curl of an arbitrary vector field to the definition. The Poynting vector is used throughout electromagnetics in conjunction with Poynting's theorem, the continuity equation expressing conservation of electromagnetic energy, to calculate the power flow in electromagnetic fields.

<span class="mw-page-title-main">Twin-lead</span> Two-conductor flat cable used to carry radio frequency signals

Twin lead cable is a two-conductor flat cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two, stranded copper wires, or solid copper-clad steel wires. The wires are held a fixed distance apart by a plastic ribbon that is a good insulator at radio frequencies. It is also called ribbon cable. The uniform spacing of the wires is the key to the cable's function as a transmission line: Any abrupt change in spacing would cause some of the signal to reflect back toward the source, rather than passing through. The plastic also covers and insulates the wires. The name twin lead is most often used to refer specifically to 300 Ω (Ohm) ribbon cable, the most common type, but on occasion, twin lead is used to refer to any type of parallel wire line. Parallel wire line is available with several different values of characteristic impedance such as twin lead ribbon cable (300 Ω), window line, and open wire line or ladder line (500~650 Ω).

<span class="mw-page-title-main">Microstrip antenna</span>

In telecommunication, a microstrip antenna usually is an antenna fabricated using photolithographic techniques on a printed circuit board (PCB). It is a kind of internal antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes on the surface of a PCB, with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil microstrip transmission lines. The radio frequency current is applied between the antenna and ground plane. Microstrip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas Patch antenna. Based on its origin, microstrip consists of two words, namely micro and is defined as a type of antenna that has a blade/piece shape and is very thin/small.

<span class="mw-page-title-main">Microstrip</span> Conductor–ground plane electrical transmission line

Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as "substrate". Microstrip lines are used to convey microwave-frequency signals.

<span class="mw-page-title-main">Stub (electronics)</span> Short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit, or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

<span class="mw-page-title-main">Unbalanced line</span>

In telecommunications and electrical engineering in general, an unbalanced line is a pair of conductors intended to carry electrical signals, which have unequal impedances along their lengths and to ground and other circuits. Examples of unbalanced lines are coaxial cable or the historic earth return system invented for the telegraph, but rarely used today. Unbalanced lines are to be contrasted with balanced lines, such as twin-lead or twisted pair which use two identical conductors to maintain impedance balance throughout the line. Balanced and unbalanced lines can be interfaced using a device called a balun.

In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the loss angleδ or the corresponding loss tangenttan(δ). Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

<span class="mw-page-title-main">Metamaterial antenna</span>

Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.

<span class="mw-page-title-main">Substrate-integrated waveguide</span> Waveguide formed by posts inserted in a dielectric substrate

A substrate-integrated waveguide (SIW) is a synthetic rectangular electromagnetic waveguide formed in a dielectric substrate by densely arraying metallized posts or via holes that connect the upper and lower metal plates of the substrate. The waveguide can be easily fabricated with low-cost mass-production using through-hole techniques, where the post walls consists of via fences. SIW is known to have similar guided wave and mode characteristics to conventional rectangular waveguide with equivalent guide wavelength.

<span class="mw-page-title-main">Spiral antenna</span> Type of RF antenna

A spiral antenna is a type of radio frequency antenna shaped as a spiral, first described in 1956. Archimedean spiral antennas are the most popular, while logarithmic spiral antennas are independent of frequency: the driving point impedance, radiation pattern and polarization of such antennas remain unchanged over a large bandwidth. Spiral antennas are inherently circularly polarized with low gain; antenna arrays can be used to increase the gain. Spiral antennas are reduced in size with its windings making it an extremely small structure. Lossy cavities are usually placed at the back to eliminate back lobes, because a unidirectional pattern is usually preferred in such antennas. Spiral antennas are classified into different configurations: Archimedean spiral, logarithmic spiral, square spiral, etc.

<span class="mw-page-title-main">Planar transmission line</span> Transmission lines with flat ribbon-like conducting or dielectric lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections, the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength, these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

Air stripline is a form of electrical planar transmission line whereby a conductor in the form of a thin metal strip is suspended between two ground planes. The idea is to make the dielectric essentially air. Mechanical support of the line may be a thin substrate, periodical insulated supports, or the device connectors and other electrical items.

<span class="mw-page-title-main">Wheeler incremental inductance rule</span> Rule of thumb for estimating skin effect resistance of parallel transmission lines

The incremental inductance rule, attributed to Harold Alden Wheeler by Gupta and others is a formula used to compute skin effect resistance and internal inductance in parallel transmission lines when the frequency is high enough that the skin effect is fully developed. Wheeler's concept is that the internal inductance of a conductor is the difference between the computed external inductance and the external inductance computed with all the conductive surfaces receded by one half of the skin depth.

Spoof surface plasmons, also known as spoof surface plasmon polaritons and designer surface plasmons, are surface electromagnetic waves in microwave and terahertz regimes that propagate along planar interfaces with sign-changing permittivities. Spoof surface plasmons are a type of surface plasmon polariton, which ordinarily propagate along metal and dielectric interfaces in infrared and visible frequencies. Since surface plasmon polaritons cannot exist naturally in microwave and terahertz frequencies due to dispersion properties of metals, spoof surface plasmons necessitate the use of artificially-engineered metamaterials.

References

  1. Oliner, pp.556-559
  2. Yarman, p. 67
  3. Oliner, pp. 558-562
  4. Michael Steer, Steer (October 21, 2010). "3.5: Microstrip Transmission Lines - Engineering LibreTexts". Engineering LibreTexts.

Bibliography