A rectenna (rectifying antenna) is a special type of receiving antenna that is used for converting electromagnetic energy into direct current (DC) electricity. They are used in wireless power transmission systems that transmit power by radio waves. A simple rectenna element consists of a dipole antenna with a diode connected across the dipole elements. The diode rectifies the AC induced in the antenna by the microwaves, to produce DC power, which powers a load connected across the diode. Schottky diodes are usually used because they have the lowest voltage drop and highest speed and therefore have the lowest power losses due to conduction and switching. [1] Large rectennas consist of arrays of many power receiving elements such as dipole antennas.
The invention of the rectenna in the 1960s made long distance wireless power transmission feasible. The rectenna was invented in 1964 and patented in 1969 [2] by US electrical engineer William C. Brown, who demonstrated it with a model helicopter powered by microwaves transmitted from the ground, received by an attached rectenna. [3] Since the 1970s, one of the major motivations for rectenna research has been to develop a receiving antenna for proposed solar power satellites, which would harvest energy from sunlight in space with solar cells and beam it down to Earth as microwaves to huge rectenna arrays. [4] A proposed military application is to power drone reconnaissance aircraft with microwaves beamed from the ground, allowing them to stay aloft for long periods.
In recent years, interest has turned to using rectennas as power sources for small wireless microelectronic devices. The largest current use of rectennas is in RFID tags, proximity cards and contactless smart cards, which contain an integrated circuit (IC) which is powered by a small rectenna element. When the device is brought near an electronic reader unit, radio waves from the reader are received by the rectenna, powering up the IC, which transmits its data back to the reader.
The simplest crystal radio receiver, employing an antenna and a demodulating diode (rectifier), is actually a rectenna, although it discards the DC component before sending the signal to the headphones. People living near strong radio transmitters would occasionally discover that with a long receiving antenna, they could get enough electric power to light a light bulb. [5]
However, this example uses only one antenna having a limited capture area. A rectenna array uses multiple antennas spread over a wide area to capture more energy.
Researchers are experimenting with the use of rectennas to power sensors in remote areas and distributed networks of sensors, especially for IoT applications. [6]
RF rectennas are used for several forms of wireless power transfer. In the microwave range, experimental devices have reached a power conversion efficiency of 85–90%. [7] The record conversion efficiency for a rectenna is 90.6% for 2.45 GHz, [8] with lower efficiency of about 82% achieved at 5.82 GHz. [8]
In principle, similar devices, scaled down to the proportions used in nanotechnology, can be used to convert light directly into electricity. This type of device is called an optical rectenna (or "nantenna"). [9] [10] [11] Theoretically, high efficiencies can be maintained as the device shrinks, but to date efficiency has been limited, and so far there has not been convincing evidence that rectification has been achieved at optical frequencies. The University of Missouri previously reported on work to develop low-cost, high-efficiency optical-frequency rectennas. [12] Other prototype devices were investigated in a collaboration between the University of Connecticut and Penn State Altoona using a grant from the National Science Foundation. [13] With the use of atomic layer deposition it has been suggested that conversion efficiencies of solar energy to electricity higher than 70% could eventually be achieved.
The creation of successful optical rectenna technology has two major complicating factors:
Below are a few examples of potential paths to creating diodes that would be fast enough to rectify optical and near-optical radiation.
A promising path towards creating these ultrafast diodes has been in the form of "geometric diodes". [14] Graphene geometric diodes have been reported to rectify terahertz radiation. [15] In April 2020, geometric diodes were reported in silicon nanowires. [16] The wires were shown experimentally to rectify up to 40 GHz, that result was the limit of the instrument used, and the wires theoretically may be able to rectify signals in the terahertz region as well.
A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction and high resistance in the other.
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz, or between 1 and 3000 GHz . The prefix micro- in microwave is not meant to suggest a wavelength in the micrometer range; rather, it indicates that microwaves are small, compared to the radio waves used in prior radio technology.
A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.
A power inverter, inverter, or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.
Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3 terahertz (THz), although the upper boundary is somewhat arbitrary and is considered by some sources as 30 THz. One terahertz is 1012 Hz or 1,000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm = 100 μm. Because terahertz radiation begins at a wavelength of around 1 millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy. This band of electromagnetic radiation lies within the transition region between microwave and far infrared, and can be regarded as either.
Super high frequency (SHF) is the ITU designation for radio frequencies (RF) in the range between 3 and 30 gigahertz (GHz). This band of frequencies is also known as the centimetre band or centimetre wave as the wavelengths range from one to ten centimetres. These frequencies fall within the microwave band, so radio waves with these frequencies are called microwaves. The small wavelength of microwaves allows them to be directed in narrow beams by aperture antennas such as parabolic dishes and horn antennas, so they are used for point-to-point communication and data links and for radar. This frequency range is used for most radar transmitters, wireless LANs, satellite communication, microwave radio relay links, satellite phones, and numerous short range terrestrial data links. They are also used for heating in industrial microwave heating, medical diathermy, microwave hyperthermy to treat cancer, and to cook food in microwave ovens.
Wireless power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, an electrically powered transmitter device generates a time-varying electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.
The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3,000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).
A Gunn diode, also known as a transferred electron device (TED), is a form of diode, a two-terminal semiconductor electronic component, with negative differential resistance, used in high-frequency electronics. It is based on the "Gunn effect" discovered in 1962 by physicist J. B. Gunn. Its main uses are in electronic oscillators to generate microwaves, in applications such as radar speed guns, microwave relay data link transmitters, and automatic door openers.
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.
A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (demodulator) to extract the audio modulation signal from the modulated carrier, to produce the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices. The most common type was the so-called cat's whisker detector, which consisted of a piece of crystalline mineral, usually galena, with a fine wire touching its surface.
Space-based solar power is the concept of collecting solar power in outer space with solar power satellites (SPS) and distributing it to Earth. Its advantages include a higher collection of energy due to the lack of reflection and absorption by the atmosphere, the possibility of very little night, and a better ability to orient to face the Sun. Space-based solar power systems convert sunlight to some other form of energy which can be transmitted through the atmosphere to receivers on the Earth's surface.
The heterostructure barrier varactor (HBV) is a semiconductor device which shows a variable capacitance with voltage bias, similar to a varactor diode. Unlike a diode, it has an anti-symmetric current-voltage relationship and a symmetric capacitance-voltage relationship, as shown in the graph to the right. The device was invented by Erik Kollberg together with Anders Rydberg in 1989 at Chalmers University of Technology.
An optical rectenna is a rectenna that works with visible or infrared light. A rectenna is a circuit containing an antenna and a diode, which turns electromagnetic waves into direct current electricity. While rectennas have long been used for radio waves or microwaves, an optical rectenna would operate the same way but with infrared or visible light, turning it into electricity.
Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
SHARP, short for Stationary High Altitude Relay Platform, was an experimental aircraft using beam-powered propulsion designed by the Communications Research Centre Canada (CRC) and built by the University of Toronto Institute for Aerospace Studies (UTIAS) during the 1980s. SHARP used microwaves to provide energy from a ground station that powered electric motors spinning propellers to keep the aircraft aloft. The power was also used for the onboard electronics. SHARP could remain aloft indefinitely, and was intended to be used as a sort of low-altitude communications satellite for smaller geographical areas.
The following outline is provided as an overview of and topical guide to electronics:
A graphene antenna is a high-frequency antenna based on graphene, a one atom thick two dimensional carbon crystal, designed to enhance radio communications. The unique structure of graphene would enable these enhancements. Ultimately, the choice of graphene for the basis of this nano antenna was due to the behavior of electrons.
A nanophotonic resonator or nanocavity is an optical cavity which is on the order of tens to hundreds of nanometers in size. Optical cavities are a major component of all lasers, they are responsible for providing amplification of a light source via positive feedback, a process known as amplified spontaneous emission or ASE. Nanophotonic resonators offer inherently higher light energy confinement than ordinary cavities, which means stronger light-material interactions, and therefore lower lasing threshold provided the quality factor of the resonator is high. Nanophotonic resonators can be made with photonic crystals, silicon, diamond, or metals such as gold.
Geometric diodes, also known as morphological diodes, use the shape of their structure and ballistic / quasi-ballistic electron transport to create diode behavior. Geometric diodes differ from all other forms of diodes because they do not rely on a depletion region or a potential barrier to create their diode behavior. Instead of a potential barrier, an asymmetry in the geometry of the material creates an asymmetry in forward vs reverse bias current.