Plasma antenna

Last updated
Hettinger's Aerial Conductors for Wireless Signaling US1309031A Hettinger's Aerial Conductors for Wireless Signaling US1309031A.jpg
Hettinger's Aerial Conductors for Wireless Signaling US1309031A

A plasma antenna is a type of radio antenna currently in development in which plasma is used instead of the metal elements of a traditional antenna. [1] A plasma antenna can be used for both transmission and reception. [2] Although plasma antennas have only become practical in recent years[ when? ], the idea is not new; a patent for an antenna using the concept was granted to J. Hettinger in 1919. [3]

Contents

Early practical examples of the technology used discharge tubes to contain the plasma and are referred to as ionized gas plasma antennas. Ionized gas plasma antennas can be turned on and off and are good for stealth and resistance to electronic warfare and cyber attacks. Ionized gas plasma antennas can be nested such that the higher frequency plasma antennas are placed inside lower frequency plasma antennas. Higher frequency ionized gas plasma antenna arrays can transmit and receive through lower frequency ionized gas plasma antenna arrays. This means that the ionized gas plasma antennas can be co-located and ionized gas plasma antenna arrays can be stacked. Ionized gas plasma antennas can eliminate or reduce co-site interference. Smart ionized gas plasma antennas use plasma physics to shape and steer the antenna beams without the need of phased arrays. Satellite signals can be steered or focused in the reflective or refractive modes using banks of plasma tubes making unique ionized gas satellite plasma antennas. The thermal noise of ionized gas plasma antennas is less than in the corresponding metal antennas at the higher frequencies. [1] Solid state plasma antennas (also known as plasma silicon antennas) with steerable directional functionality that can be manufactured using standard silicon chip fabrication techniques are now also in development. [4] Plasma silicon antennas are candidates for use in WiGig (the planned enhancement to Wi-Fi), and have other potential applications, for example in reducing the cost of vehicle-mounted radar collision avoidance systems. [4]

Operation

In an ionized gas plasma antenna, a gas is ionized to create a plasma. Unlike gases, plasmas have very high electrical conductivity so it is possible for radio frequency signals to travel through them so that they act as a driven element (such as a dipole antenna) to radiate radio waves, or to receive them. Alternatively the plasma can be used as a reflector or a lens to guide and focus radio waves from another source. [5]

Solid-state antennas differ in that the plasma is created from electrons generated by activating thousands of diodes on a silicon chip. [4]

Advantages

Plasma antennas possess a number of advantages over metal antennas, including:

Related Research Articles

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths ranging from about 30 centimeters to one millimeter corresponding to frequencies between 1 GHz and 300 GHz respectively. Different sources define different frequency ranges as microwaves; the above broad definition includes UHF, SHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

<span class="mw-page-title-main">Cassegrain antenna</span> Type of parabolic antenna with a convex secondary reflector

In telecommunications and radar, a Cassegrain antenna is a parabolic antenna in which the feed antenna is mounted at or behind the surface of the concave main parabolic reflector dish and is aimed at a smaller convex secondary reflector suspended in front of the primary reflector. The beam of radio waves from the feed illuminates the secondary reflector, which reflects it back to the main reflector dish, which reflects it forward again to form the desired beam. The Cassegrain design is widely used in parabolic antennas, particularly in large antennas such as those in satellite ground stations, radio telescopes, and communication satellites.

<span class="mw-page-title-main">Phased array</span> Array of antennas creating a steerable beam

In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving the antennas. The general theory of an electromagnetic phased array also finds applications in ultrasonic and medical imaging application and in optics optical phased array.

<span class="mw-page-title-main">Reflective array antenna</span>

In telecommunications and radar, a reflective array antenna is a class of directive antennas in which multiple driven elements are mounted in front of a flat surface designed to reflect the radio waves in a desired direction. They are a type of array antenna. They are often used in the VHF and UHF frequency bands. VHF examples are generally large and resemble a highway billboard, so they are sometimes called billboard antennas. Other names are bedspring array and bowtie array depending on the type of elements making up the antenna. The curtain array is a larger version used by shortwave radio broadcasting stations.

<span class="mw-page-title-main">Radio telescope</span> Directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.

<span class="mw-page-title-main">High frequency</span> The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

<span class="mw-page-title-main">Directional antenna</span> Radio antenna which has greater performance in specific alignments

A directional antenna or beam antenna is an antenna which radiates or receives greater radio wave power in specific directions. Directional antennas can radiate radio waves in beams, when greater concentration of radiation in a certain direction is desired, or in receiving antennas receive radio waves from one specific direction only. This can increase the power transmitted to receivers in that direction, or reduce interference from unwanted sources. This contrasts with omnidirectional antennas such as dipole antennas which radiate radio waves over a wide angle, or receive from a wide angle.

The 2-meter amateur radio band is a portion of the VHF radio spectrum that comprises frequencies stretching from 144 MHz to 148 MHz in International Telecommunication Union region (ITU) Regions 2 and 3 and from 144 MHz to 146 MHz in ITU Region 1 . The license privileges of amateur radio operators include the use of frequencies within this band for telecommunication, usually conducted locally with a line-of-sight range of about 100 miles (160 km).

<span class="mw-page-title-main">Direction finding</span> Measurement of the direction from which a received signal was transmitted

Direction finding (DF), or radio direction finding (RDF), is the use of radio waves to determine the direction to a radio wave source. The source may be a cooperating radio transmitter or may be an inadvertant source, a naturally-occurring radio source, or an illicit or enemy system. Radio direction finding differs from radar in that only the direction is determined by any one receiver; a radar system usually also gives a distance to the object of interest, as well as direction. By triangulation, the location of a radio source can be determined by measuring its direction from two or more locations. Radio direction finding is used in radio navigation for ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. During the Second World War, radio direction finding was used by both sides to locate and direct aircraft, surface ships, and submarines.

<span class="mw-page-title-main">Active electronically scanned array</span> Type of phased array radar

An active electronically scanned array (AESA) is a type of phased array antenna, which is a computer-controlled array antenna in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased array radar (APAR).

<span class="mw-page-title-main">Beverage antenna</span> Type of radio antenna

The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications.

Plasma stealth is a proposed process to use ionized gas (plasma) to reduce the radar cross-section (RCS) of an aircraft. Interactions between electromagnetic radiation and ionized gas have been extensively studied for many purposes, including concealing aircraft from radar as stealth technology. Various methods might plausibly be able to form a layer or cloud of plasma around a vehicle to deflect or absorb radar, from simpler electrostatic or radio frequency discharges to more complex laser discharges. It is theoretically possible to reduce RCS in this way, but it may be very difficult to do so in practice. Some Russian missiles e.g. the 3M22 Zircon (SS-N-33) and Kh-47M2 Kinzhal missiles have been reported to make use of plasma stealth.

<span class="mw-page-title-main">Passive electronically scanned array</span> Type of antenna

A passive electronically scanned array (PESA), also known as passive phased array, is an antenna in which the beam of radio waves can be electronically steered to point in different directions, in which all the antenna elements are connected to a single transmitter and/or receiver. The largest use of phased arrays is in radars. Most phased array radars in the world are PESA. The civilian microwave landing system uses PESA transmit-only arrays.

<span class="mw-page-title-main">Plasma-enhanced chemical vapor deposition</span> Method of depositing thin films onto a substrate

Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Chemical reactions are involved in the process, which occur after creation of a plasma of the reacting gases. The plasma is generally created by radio frequency (RF) frequency or direct current (DC) discharge between two electrodes, the space between which is filled with the reacting gases.

<span class="mw-page-title-main">Antenna array</span> Set of multiple antennas which work together

An antenna array is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together to enhance the power radiated in desired directions, and cancelling to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.

Fresnel zone antennas are antennas that focus the signal by using the phase shifting property of the antenna surface or its shape . There are several types of Fresnel zone antennas, namely, Fresnel zone plate, offset Fresnel zone plate antennas, phase correcting reflective array or "Reflectarray" antennas and 3 Dimensional Fresnel antennas. They are a class of diffractive antennas and have been used from radio frequencies to X rays.

<span class="mw-page-title-main">Curtain array</span> Class of large multielement directional wire radio transmitting antennas

Curtain arrays are a class of large multielement directional radio transmitting wire antennas, used in the shortwave radio bands. They are a type of reflective array antenna, consisting of multiple wire dipole antennas, suspended in a vertical plane, often in front of a "curtain" reflector made of a flat vertical screen of many long parallel wires. These are suspended by support wires strung between pairs of tall steel towers, up to 90 m high. They are used for long-distance skywave transmission; they transmit a beam of radio waves at a shallow angle into the sky just above the horizon, which is reflected by the ionosphere back to Earth beyond the horizon. Curtain antennas are mostly used by international short wave radio stations to broadcast to large areas at transcontinental distances.

The first smart antennas were developed for military communications and intelligence gathering. The growth of cellular telephone in the 1980s attracted interest in commercial applications. The upgrade to digital radio technology in the mobile phone, indoor wireless network, and satellite broadcasting industries created new opportunities for smart antennas in the 1990s, culminating in the development of the MIMO technology used in 4G wireless networks.

References

  1. 1 2 3 'Stealth' Antenna Made Of Gas, Impervious To Jamming science20.com, published 2007-11-12, accessed 2010-12-14
  2. 1 2 3 Plasma Antenna Center for Remote Sensing, accessed 2010-12-14
  3. Aerial Conductor for Wireless Signaling and Other Purposes United States Patent 1309031, published 1919-07-08, accessed 2010-12-15
  4. 1 2 3 Wireless at the speed of plasma New Scientist, published 2010-12-13, accessed 2010-12-14
  5. Plasma Antennas: Survey of Techniques and the Current State of the Art D C Jenn, published 2003-09-29, accessed 2010-10-15
  6. 1 2 3 Advances in Plasma Antenna Design Alexeff, I et al., Tennessee University, ISSN   0730-9244, ISBN   0-7803-9300-7, published 2007-05-15, accessed 2010-12-14
  7. 1 2 3 4 Plasma Antennas Theodore Anderson, Artech house, 2011, ISBN   978-1-60807-143-2
  8. Plasma Antennas scribd, accessed 2010-12-15
  9. An Electronically Steerable and Focusing Plasma Reflector Antenna and An Electronically Steerable and Focusing Bank of Plasma Tubes Archived 2011-01-04 at the Wayback Machine Haleakala Research and Development, accessed 2010-12-14