Reflector (antenna)

Last updated
Parabolic reflector as part of a Satellite dish Satellite dish 1 C-Band.jpg
Parabolic reflector as part of a Satellite dish

An antenna reflector is a device that reflects electromagnetic waves. Antenna reflectors can exist as a standalone device for redirecting radio frequency (RF) energy, or can be integrated as part of an antenna assembly.

Contents

Standalone reflectors

Types of parabolic antennas Parabolic antenna types2.svg
Types of parabolic antennas
Corner reflector part of a UHF television antenna UHF TV Antenna 001.JPG
Corner reflector part of a UHF television antenna

The function of a standalone reflector is to redirect electromagnetic (EM) energy, generally in the radio wavelength range of the electromagnetic spectrum.

Common standalone reflector types are

Integrated reflectors

When integrated into an antenna assembly, the reflector serves to modify the radiation pattern of the antenna, increasing gain in a given direction.

Common integrated reflector types are

Design criteria

Parameters that can directly influence the performance of an antenna with integrated reflector:

The antenna efficiency is measured in terms of its effectiveness ratio.

Any gain-degrading factors which raise side lobes have a two-fold effect, in that they contribute to system noise temperature in addition to reducing gain. Aperture blockage and deviation of reflector surface (from the designed "ideal") are two important cases. Aperture blockage is normally due to shadowing by feed, subreflector and/or support members. Deviations in reflector surfaces cause non-uniform aperture distributions, resulting in reduced gains.

The standard symmetrical, parabolic, Cassegrain reflector system is very popular in practice because it allows minimum feeder length to the terminal equipment. The major disadvantage of this configuration is blockage by the hyperbolic sub-reflector and its supporting struts (usually 3–4 are used). The blockage becomes very significant when the size of the parabolic reflector is small compared to the diameter of the sub-reflector. To avoid blockage from the sub-reflector asymmetric designs such as the open Cassegrain can be employed. Note however that the asymmetry can have deleterious effects on some aspects of the antenna's performance - for example, inferior side-lobe levels, beam squint, poor cross-polar response, etc.

To avoid spillover from the effects of over-illumination of the main reflector surface and diffraction, a microwave absorber is sometimes employed. This lossy material helps prevent excessive side-lobe levels radiating from edge effects and over-illumination. Note that in the case of a front-fed Cassegrain the feed horn and feeder (usually waveguide) need to be covered with an edge absorber in addition to the circumference of the main paraboloid.

Measurements

Measurements are made on reflector antennas to establish important performance indicators such as the gain and sidelobe levels. For this purpose the measurements must be made at a distance at which the beam is fully formed. A distance of four Rayleigh distances is commonly adopted as the minimum distance at which measurements can be made, unless specialized techniques are used (see Antenna measurement ).

See also

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Cassegrain antenna</span> Type of parabolic antenna with a convex secondary reflector

In telecommunications and radar, a Cassegrain antenna is a parabolic antenna in which the feed antenna is mounted at or behind the surface of the concave main parabolic reflector dish and is aimed at a smaller convex secondary reflector suspended in front of the primary reflector. The beam of radio waves from the feed illuminates the secondary reflector, which reflects it back to the main reflector dish, which reflects it forward again to form the desired beam. The Cassegrain design is widely used in parabolic antennas, particularly in large antennas such as those in satellite ground stations, radio telescopes, and communication satellites.

<span class="mw-page-title-main">Reflective array antenna</span>

In telecommunications and radar, a reflective array antenna is a class of directive antennas in which multiple driven elements are mounted in front of a flat surface designed to reflect the radio waves in a desired direction. They are a type of array antenna. They are often used in the VHF and UHF frequency bands. VHF examples are generally large and resemble a highway billboard, so they are sometimes called billboard antennas. Other names are bedspring array and bowtie array depending on the type of elements making up the antenna. The curtain array is a larger version used by shortwave radio broadcasting stations.

<span class="mw-page-title-main">Antenna (radio)</span> Electrical device

In radio engineering, an antenna or aerial is an electronic device that converts an alternating electric current into radio waves (transmitting), or radio waves into an electric current (receiving). It is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

<span class="mw-page-title-main">Parabolic reflector</span> Reflector that has the shape of a paraboloid

A parabolicreflector is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave travelling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Directional antenna</span> Radio antenna which has greater performance in specific alignments

A directional antenna or beam antenna is an antenna which radiates or receives greater radio wave power in specific directions. Directional antennas can radiate radio waves in beams, when greater concentration of radiation in a certain direction is desired, or in receiving antennas receive radio waves from one specific direction only. This can increase the power transmitted to receivers in that direction, or reduce interference from unwanted sources. This contrasts with omnidirectional antennas such as dipole antennas which radiate radio waves over a wide angle, or receive from a wide angle.

<span class="mw-page-title-main">Holmdel Horn Antenna</span> Microwave horn antenna in New Jersey, US

The Holmdel Horn Antenna is a large microwave horn antenna that was used as a satellite communication antenna and radio telescope during the 1960s at the Bell Telephone Laboratories facility located on Crawford Hill in Holmdel Township, New Jersey, United States. It was designated a National Historic Landmark in 1989 because of its association with the research work of two radio astronomers, Arno Penzias and Robert Wilson.

<span class="mw-page-title-main">Horn antenna</span> Funnel-shaped waveguide radio device

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are used as feed antennas for larger antenna structures such as parabolic antennas, as standard calibration antennas to measure the gain of other antennas, and as directive antennas for such devices as radar guns, automatic door openers, and microwave radiometers. Their advantages are moderate directivity, broad bandwidth, low losses, and simple construction and adjustment.

<span class="mw-page-title-main">Cassegrain reflector</span> Combination of concave and convex mirrors

The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

Antenna measurement techniques refers to the testing of antennas in order to ensure that the antenna meets specifications or simply to characterize it. Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means.

<span class="mw-page-title-main">AN/SPG-55</span>

The AN/SPG-55 was an American tracking / illumination radar for Terrier and RIM-67 Standard missiles (SM-1ER/SM-2ER). It was used for target tracking and surface-to-air missile guidance as part of the Mk 76 missile fire control system. It was controlled by a UNIVAC 1218 computer.

<span class="mw-page-title-main">Focal cloud</span> Aspect of a lens or reflector

A focal cloud is the collection of focal points of an imperfect lens or parabolic reflector whether optical, electrostatic or electromagnetic. This includes parabolic antennas and lens-type reflective antennas of all kinds. The effect is analogous to the circle of confusion in photography.

<span class="mw-page-title-main">Yebes Observatory RT40m</span>

The Yebes Observatory RT40m, or ARIESXXI, is a radio telescope which is part of the observatory at Yebes, Spain. It is a 40-metre Cassegrain–Nasmyth telescope.

<span class="mw-page-title-main">Antenna array</span> Set of multiple antennas which work together

An antenna array is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together to enhance the power radiated in desired directions, and cancelling to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.

The Xinjiang Qitai 120m Radio Telescope (QTT) is a planned radio telescope to be built in Qitai County in Xinjiang, China. Upon completion, which is scheduled for 2028, it will be the world's largest fully steerable single-dish radio telescope. It is intended to operate at 150 MHz to 115 GHz. The construction of the antenna project is under the leadership of the Xinjiang Astronomical Observatory of the Chinese Academy of Sciences.

In antenna theory, radiation efficiency is a measure of how well a radio antenna converts the radio-frequency power accepted at its terminals into radiated power. Likewise, in a receiving antenna it describes the proportion of the radio wave's power intercepted by the antenna which is actually delivered as an electrical signal. It is not to be confused with antenna efficiency, which applies to aperture antennas such as a parabolic reflector or phased array, or antenna/aperture illumination efficiency, which relates the maximum directivity of an antenna/aperture to its standard directivity.

<span class="mw-page-title-main">Reflectarray antenna</span> Beam focusing, typically horn-fed planar array of unit cells

A reflectarray antenna consists of an array of unit cells, illuminated by a feeding antenna. The feeding antenna is usually a horn. The unit cells are usually backed by a ground plane, and the incident wave reflects off them towards the direction of the beam, but each cell adds a different phase delay to the reflected signal. A phase distribution of concentric rings is applied to focus the wavefronts from the feeding antenna into a plane wave . A progressive phase shift can be applied to the unit cells to steer the beam direction. It is common to offset the feeding antenna to prevent blockage of the beam. In this case, the phase distribution on the reflectarray surface needs to be altered. A reflectarray focuses a beam in a similar way to a parabolic reflector (dish), but with a much thinner form factor.

References

  1. J. J. Condon; S. M. Ransom. "Reflector Antennas". Essential Radio Astronomy. National Radio Astronomy Observatory. Archived from the original on 2013-11-02. Retrieved 2013-11-02.