Frequency ambiguity resolution

Last updated
Doppler signal sampled with a pulse rate near the Doppler frequency. AliasingSines.svg
Doppler signal sampled with a pulse rate near the Doppler frequency.

Frequency ambiguity resolution is used to find the true target velocity for medium pulse repetition frequency (PRF) radar systems. This is used with pulse-Doppler radar.

Contents

Definition

Radial velocity aliasing occurs when reflections arrive from reflectors moving fast enough for the Doppler frequency to exceed the pulse repetition frequency (PRF).

Frequency ambiguity resolution is required to obtain the true radial velocity when the measurements is made using a system where the following inequality is true.

The radial velocity measurements made in this way produce a modulo function of the true radial velocity.

Theory

Radar pulsing causes a phenomenon called aliasing, which occurs when the Doppler frequency created by reflector motion exceeds the pulse repetition frequency (PRF). [1]

This concept is related to range ambiguity resolution.

Doppler frequency shift is introduced onto reflected signals used by radar.

Operation

When the Doppler frequency shift exceeds the PRF, the frequency is reduced. This limitation is called the Nyquist sampling rate. This introduces a modulo operation onto the apparent frequency of the reflected signal.

The ambiguous velocity is as follows.

Frequency is folded for high speed targets where radial velocity produces a frequency shift above the Nyquist frequency. The true speed of the target may be folded by a modulo operation produced by the sampling process.

The Nyquist frequency will also change when the PRF is changed.

This is explained best using an example with 2 different PRF, although real systems use a different method.

In the example, PRF A can detect true speed up to 600MPH and PRF B can detect true speed up to 500MPH.

0MPH100MPH200MPH300MPH400MPH500MPH
Target PRF A
Target PRF B

The apparent speed for PRF A falls in the 200MPH filter, and the apparent speed for PRF B falls in the 400MPH filter. This combination places the true target speed at 1,400MPH (2x6+2 or 2x5+4). This can be seen graphically when range intervals are stacked end-to-end as shown below.

01234567891011121314151617181920212223242526272929
AAAAA
BBBBBB

"A" represents target speed possibilities for PRF A, and "B" represents target speed possibilities for PRF B.

This frequency ambiguity resolution signal processing technique determines true velocity.

Ambiguity resolution is typically implemented with a look-up table. This could also be implemented as a convolution function, where the spectrum amplitudes from one PRF are applied to spectrum samples from the other PRF as a sliding window function. [2]

Limitations

Processing techniques are slightly more complicated when there is more than one reflection at the same distance with slightly different radial velocity.

Related Research Articles

The Doppler effect or Doppler shift is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a detection system that uses radio waves to determine the distance (ranging), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar.

<span class="mw-page-title-main">Millimeter cloud radar</span>

Millimeter-wave cloud radars, also denominated cloud radars, are radar systems designed to monitor clouds with operating frequencies between 24 and 110 GHz. Accordingly, their wavelengths range from 1 mm to 1.11 cm, about ten times shorter than those used in conventional S band radars such as NEXRAD.

<span class="mw-page-title-main">Radial velocity</span> Velocity of an object as the rate of distance change between the object and a point

The radial velocity or line-of-sight velocity, also known as radial speed or range rate, of a target with respect to an observer is the rate of change of the distance or range between the two points. It is equivalent to the vector projection of the target-observer relative velocity onto the relative direction connecting the two points. In astronomy, the point is usually taken to be the observer on Earth, so the radial velocity then denotes the speed with which the object moves away from the Earth.

<span class="mw-page-title-main">Time dilation</span> Measured time difference as explained by relativity theory

In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them or to a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

<span class="mw-page-title-main">Relativistic Doppler effect</span> Scientific phenomenon

The relativistic Doppler effect is the change in frequency of light, caused by the relative motion of the source and the observer, when taking into account effects described by the special theory of relativity.

The pulse repetition frequency (PRF) is the number of pulses of a repeating signal in a specific time unit. The term is used within a number of technical disciplines, notably radar.

In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Continuous-wave radar</span>

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

<span class="mw-page-title-main">Ultrasonic flow meter</span> Flow meter using ultrasound

An ultrasonic flow meter is a type of flow meter that measures the velocity of a fluid with ultrasound to calculate volume flow. Using ultrasonic transducers, the flow meter can measure the average velocity along the path of an emitted beam of ultrasound, by averaging the difference in measured transit time between the pulses of ultrasound propagating into and against the direction of the flow or by measuring the frequency shift from the Doppler effect. Ultrasonic flow meters are affected by the acoustic properties of the fluid and can be impacted by temperature, density, viscosity and suspended particulates depending on the exact flow meter. They vary greatly in purchase price but are often inexpensive to use and maintain because they do not use moving parts, unlike mechanical flow meters.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

Range ambiguity resolution is a technique used with medium Pulse repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses.

Ambiguity resolution is used to find the value of a measurement that requires modulo sampling.

Scalloping is a radar phenomenon that reduces sensitivity for certain distance and velocity combinations.

Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common. Small fast moving objects can be identified close to terrain, near the sea surface, and inside storms.

The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.

High Resolution Wide Swath (HRWS) imaging is an important branch in Synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.

References

  1. "Sampling and Aliasing". Curtin University of Technology. Archived from the original on 2011-07-27. Retrieved 2011-08-03.
  2. "Sliding Window". Radartutorial.