Range ambiguity resolution

Last updated

Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses.

Contents

This signal processing technique is required with pulse-Doppler radar. [1] [2] [3]

The raw return signal from a reflection will appear to be arriving from a distance less than the true range of the reflection when the wavelength of the pulse repetition frequency (PRF) is less than the range of the reflection. This causes reflected signals to be folded, so that the apparent range is a modulo function of true range.

Definition

Range aliasing occurs when reflections arrive from distances that exceed the distance between transmit pulses at a specific pulse repetition frequency (PRF).

Range ambiguity resolution is required to obtain the true range when the measurements are made using a system where the following inequality is true.

Here c is the signal speed, which for radar is the speed of light. The range measurements made in this way produces a modulo function of the true range.

Theory

To find the true range, the radar must measure the apparent range using two or more different PRF.

Suppose a two PRF combination is chosen where the distance between transmit pulses (pulse spacing) is different by the pulse width of the transmitter.

Each transmit pulse is separated in distance the ambiguous range interval. Multiple samples are taken between transmit pulses.

If the receive signal falls in the same sample number for both PRF, then the object is in the first ambiguous range interval. If the receive signal falls into sample numbers that are different by one, then the object is in the second ambiguous range interval. If the receive signal falls into sample numbers that are different by two, then the object is in the third ambiguous range interval.

The general constraints for range performance are as follows.

Each sample is processed to determine if there is a reflected signal (detection). This is called signal detection.

The detection made using both PRF can be compared to identify the true range. This comparison depends upon the transmitter duty cycle (the ratio between on and off).

The duty cycle is the ratio of the width of the transmit pulse width and the period between pulses . [4]

Pulse-Doppler can reliably resolve true range at all distances less than the Instrumented Range. The optimum pair of PRF used for a pulse-Doppler detection scheme must be different by a minimum of . This makes the range of each PRF different by the width of the sample period.

The difference between the sample numbers where reflection signal is found for these two PRF will be about the same as the number of the ambiguous range intervals between the radar and the reflector (i.e.: if the reflection falls in sample 3 for PRF 1 and in sample 5 for PRF 2, then the reflector is in ambiguous range interval 2=5-3).

There is no guarantee that true range will be found for objects beyond this distance.

Operation

The following is a special case of the Chinese remainder theorem.

Each ambiguous range sample contains the receive signal from multiple different range locations. Ambiguity processing determines the true range.

This is explained best using the following example, where PRF A produces a transmit pulse every 6 km and PRF B produces a transmit pulse every 5 km.

Transmit1 km Sample2 km Sample3 km Sample4 km Sample5 km Sample
Target PRF A
Target PRF B

The apparent range for PRF A falls in the 2 km sample, and the apparent range for PRF B falls in the 4 km sample. This combination places the true target distance at 14 km (2x6+2 or 2x5+4). This can be seen graphically when range intervals are stacked end-to-end as shown below.

01234567891011121314151617181920212223242526272929
AAAAA
BBBBBB

"A" represents target range possibilities for PRF A, and "B" represents target range possibilities for PRF B.

This process uses a look-up table when there is only one detection. The size of the table limits the maximum range.

The process shown above is a type of digital convolution algorithm.

Limitations

This technique has two limitations.

The process described above is slightly more complex in real systems because more than one detection signal can occur within the radar beam. The pulse rate must alternate rapidly between at least 4 different PRF to handle these complexities.

Blind Zones

Each individual PRF has blind ranges, where the transmitter pulse occurs at the same time as the target reflection signal arrives back at the radar. Each individual PRF has blind velocities where the velocity of the aircraft will appear stationary. This causes scalloping, where the radar can be blind for some combinations of speed and distance.

A four PRF scheme is generally used with two pair of PRF for the detection process so that blind zones are eliminated.

The antenna must dwell in the same position for at least three different PRF. This imposes a minimum time limit for the volume to be scanned.

Multiple Targets

Multiple aircraft within the radar beam that are separated by over 500 meters introduces additional degrees of freedom that requires additional information and additional processing. This is mathematically equivalent to multiple unknown quantities that require multiple equations. Algorithms that handle multiple targets often employ some type of clustering [5] [6] to determine how many targets are present.

Doppler frequency shift induced by changing transmit frequency reduces unknown degrees of freedom.

Sorting detections in order of amplitude reduces unknown degrees of freedom.

Ambiguity resolution relies on processing detections with similar size or speed together as a group.

Implementations

Related Research Articles

<span class="mw-page-title-main">Bandwidth (signal processing)</span> Range of usable frequencies

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to passband bandwidth or baseband bandwidth. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency.

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">Millimeter cloud radar</span>

Millimeter-wave cloud radars, also denominated cloud radars, are radar systems designed to monitor clouds with operating frequencies between 24 and 110 GHz. Accordingly, their wavelengths range from 1 mm to 1.11 cm, about ten times shorter than those used in conventional S band radars such as NEXRAD.

The pulse-repetition frequency (PRF) is the number of pulses of a repeating signal in a specific time unit. The term is used within a number of technical disciplines, notably radar.

In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Continuous-wave radar</span>

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

<span class="mw-page-title-main">Space-time adaptive processing</span>

Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem. Through careful application of STAP, it is possible to achieve order-of-magnitude sensitivity improvements in target detection.

Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth of the transmitted signal are constrained. This is achieved by modulating the transmitted pulse and then correlating the received signal with the transmitted pulse.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

<span class="mw-page-title-main">Clutter (radar)</span> Unwanted echoes

Clutter is a term used for unwanted echoes in electronic systems, particularly in reference to radars. Such echoes are typically returned from ground, sea, rain, animals/insects, chaff and atmospheric turbulences, and can cause serious performance issues with radar systems.

<span class="mw-page-title-main">AN/FPS-17</span>

The AN/FPS-17 was a ground-based fixed-beam radar system that was installed at three locations worldwide, including Pirinçlik Air Base in south-eastern Turkey, Laredo, Texas and Shemya Island, Alaska.

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

<span class="mw-page-title-main">Frequency ambiguity resolution</span> Radar signal processing

Frequency ambiguity resolution is used to find the true target velocity for medium pulse repetition frequency (PRF) radar systems. This is used with pulse-Doppler radar.

Ambiguity resolution is used to find the value of a measurement that requires modulo sampling.

Scalloping is a radar phenomenon that reduces sensitivity for certain distance and velocity combinations.

Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common. Small fast moving objects can be identified close to terrain, near the sea surface, and inside storms.

Radar envelope is a critical Measure of Performance (MOP) identified in the Test and Evaluation Master Plan (TEMP). This is the volume of space where a radar system is required to reliably detect an object with a specific size and speed. This is one of the requirements that must be evaluated as part of the acceptance testing process.

High Resolution Wide Swath (HRWS) imaging is an important branch in Synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.

References

  1. "Multi-PRI Signal Processing For The Terminal Doppler Weather Radar. Part II: Range-Velocity Ambiguity Mitigation" (PDF). MIT.
  2. "Radar Range Velocity Ambiguity Mitigation". Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma. Archived from the original on 2011-09-28.
  3. "A Guide for Interpreting Doppler Velocity Patterns". National Oceanic and Atmospheric Administration.
  4. "555 timer" Archived 2011-09-03 at the Wayback Machine , Doctronics, accessed 2011-03-23
  5. Stinco, P.; Greco, M.; Gini, F.; Farina, A.; Timmoneri, L. (12–16 October 2009). Analysis and Comparison of Two Disambiguity Algorithms: The modified CA and CRT. Proceeding of the International Radar Conference. Bordeaux, France.
  6. Trunk, G.; Brockett, S. (20–22 April 1993). Range and velocity ambiguity resolution. IEEE National Radar Conference. Lynnfield, MA.
  7. "Tracker Component Library". Matlab Repository. Retrieved January 12, 2019.