A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. [1] [2] [3] Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. [2] [4] The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer . [2]
In the most common application, two signals at frequencies f1 and f2 are mixed, creating two new signals, one at the sum of the two frequencies f1 + f2, and the other at the difference between the two frequencies f1 − f2. [3] The new signal frequencies are called heterodynes. Typically, only one of the heterodynes is required and the other signal is filtered out of the output of the mixer. Heterodyne frequencies are related to the phenomenon of "beats" in acoustics. [2] [5] [6]
A major application of the heterodyne process is in the superheterodyne radio receiver circuit, which is used in virtually all modern radio receivers.
In 1901, Reginald Fessenden demonstrated a direct-conversion receiver or beat receiver as a method of making continuous wave radiotelegraphy signals audible. [7] Fessenden's receiver did not see much application because of its local oscillator's stability problem. A stable yet inexpensive local oscillator was not available until Lee de Forest invented the triode vacuum tube oscillator. [8] In a 1905 patent, Fessenden stated that the frequency stability of his local oscillator was one part per thousand. [9]
In radio telegraphy, the characters of text messages are translated into the short duration dots and long duration dashes of Morse code that are broadcast as radio signals. Radio telegraphy was much like ordinary telegraphy. One of the problems was building high power transmitters with the technology of the day. Early transmitters were spark gap transmitters. A mechanical device would make sparks at a fixed but audible rate; the sparks would put energy into a resonant circuit that would then ring at the desired transmission frequency (which might be 100 kHz). This ringing would quickly decay, so the output of the transmitter would be a succession of damped waves. When these damped waves were received by a simple detector, the operator would hear an audible buzzing sound that could be transcribed back into alpha-numeric characters.
With the development of the arc converter radio transmitter in 1904, continuous wave (CW) modulation began to be used for radiotelegraphy. CW Morse code signals are not amplitude modulated, but rather consist of bursts of sinusoidal carrier frequency. When CW signals are received by an AM receiver, the operator does not hear a sound. The direct-conversion (heterodyne) detector was invented to make continuous wave radio-frequency signals audible. [10]
The "heterodyne" or "beat" receiver has a local oscillator that produces a radio signal adjusted to be close in frequency to the incoming signal being received. When the two signals are mixed, a "beat" frequency equal to the difference between the two frequencies is created. Adjusting the local oscillator frequency correctly puts the beat frequency in the audio range, where it can be heard as a tone in the receiver's earphones whenever the transmitter signal is present. Thus the Morse code "dots" and "dashes" are audible as beeping sounds. This technique is still used in radio telegraphy, the local oscillator now being called the beat frequency oscillator or BFO. Fessenden coined the word heterodyne from the Greek roots hetero- "different", and dyn- "power" (cf. δύναμις or dunamis). [11]
An important and widely used application of the heterodyne technique is in the superheterodyne receiver (superhet). In the typical superhet, the incoming radio frequency signal from the antenna is mixed (heterodyned) with a signal from a local oscillator (LO) to produce a lower fixed frequency signal called the intermediate frequency (IF) signal. The IF signal is amplified and filtered and then applied to a detector that extracts the audio signal; the audio is ultimately sent to the receiver's loudspeaker.
The superheterodyne receiver has several advantages over previous receiver designs. One advantage is easier tuning; only the RF filter and the LO are tuned by the operator; the fixed-frequency IF is tuned ("aligned") at the factory and is not adjusted. In older designs such as the tuned radio frequency receiver (TRF), all of the receiver stages had to be simultaneously tuned. In addition, since the IF filters are fixed-tuned, the receiver's selectivity is the same across the receiver's entire frequency band. Another advantage is that the IF signal can be at a much lower frequency than the incoming radio signal, and that allows each stage of the IF amplifier to provide more gain. To first order, an amplifying device has a fixed gain-bandwidth product. If the device has a gain-bandwidth product of 60 MHz, then it can provide a voltage gain of 3 at an RF of 20 MHz or a voltage gain of 30 at an IF of 2 MHz. At a lower IF, it would take fewer gain devices to achieve the same gain. The regenerative radio receiver obtained more gain out of one gain device by using positive feedback, but it required careful adjustment by the operator; that adjustment also changed the selectivity of the regenerative receiver. The superheterodyne provides a large, stable gain and constant selectivity without troublesome adjustment.
The superior superheterodyne system replaced the earlier TRF and regenerative receiver designs, and since the 1930s most commercial radio receivers have been superheterodynes.
Heterodyning, also called frequency conversion, is used very widely in communications engineering to generate new frequencies and move information from one frequency channel to another. Besides its use in the superheterodyne circuit found in almost all radio and television receivers, it is used in radio transmitters, modems, satellite communications and set-top boxes, radar, radio telescopes, telemetry systems, cell phones, cable television converter boxes and headends, microwave relays, metal detectors, atomic clocks, and military electronic countermeasure (jamming) systems.
In large scale telecommunication networks such as telephone network trunks, microwave relay networks, cable television systems, and communication satellite links, large bandwidth capacity links are shared by many individual communication channels by using heterodyning to move the frequency of the individual signals up to different frequencies, which share the channel. This is called frequency division multiplexing (FDM).
For example, a coaxial cable used by a cable television system can carry 500 television channels at the same time because each one is given a different frequency, so they do not interfere with one another. At the cable source or headend, electronic upconverters convert each incoming television channel to a new, higher frequency. They do this by mixing the television signal frequency, fCH with a local oscillator at a much higher frequency fLO, creating a heterodyne at the sum fCH + fLO, which is added to the cable. At the consumer's home, the cable set top box has a downconverter that mixes the incoming signal at frequency fCH + fLO with the same local oscillator frequency fLO creating the difference heterodyne frequency, converting the television channel back to its original frequency: (fCH + fLO) − fLO = fCH. Each channel is moved to a different higher frequency. The original lower basic frequency of the signal is called the baseband, while the higher channel it is moved to is called the passband.
Many analog videotape systems rely on a downconverted color subcarrier to record color information in their limited bandwidth. These systems are referred to as "heterodyne systems" or "color-under systems". For instance, for NTSC video systems, the VHS (and S-VHS) recording system converts the color subcarrier from the NTSC standard 3.58 MHz to ~629 kHz. [12] PAL VHS color subcarrier is similarly downconverted (but from 4.43 MHz). The now-obsolete 3/4" U-matic systems use a heterodyned ~688 kHz subcarrier for NTSC recordings (as does Sony's Betamax, which is at its basis a 1/2″ consumer version of U-matic), while PAL U-matic decks came in two mutually incompatible varieties, with different subcarrier frequencies, known as Hi-Band and Low-Band. Other videotape formats with heterodyne color systems include Video-8 and Hi8. [13]
The heterodyne system in these cases is used to convert quadrature phase-encoded and amplitude modulated sine waves from the broadcast frequencies to frequencies recordable in less than 1 MHz bandwidth. On playback, the recorded color information is heterodyned back to the standard subcarrier frequencies for display on televisions and for interchange with other standard video equipment.
Some U-matic (3/4″) decks feature 7-pin mini-DIN connectors to allow dubbing of tapes without conversion, as do some industrial VHS, S-VHS, and Hi8 recorders.
The theremin, an electronic musical instrument, traditionally uses the heterodyne principle to produce a variable audio frequency in response to the movement of the musician's hands in the vicinity of one or more antennae, which act as capacitor plates. The output of a fixed radio frequency oscillator is mixed with that of an oscillator whose frequency is affected by the variable capacitance between the antenna and the musician's hand as it is moved near the pitch control antenna. The difference between the two oscillator frequencies produces a tone in the audio range.
The ring modulator is a type of frequency mixer incorporated into some synthesizers or used as a stand-alone audio effect.
Optical heterodyne detection (an area of active research) is an extension of the heterodyning technique to higher (visible) frequencies. Guerra [14] (1995) first published the results of what he called a "form of optical heterodyning" in which light patterned by a 50 nm pitch grating illuminated a second grating of pitch 50 nm, with the gratings rotated with respect to each other by the angular amount needed to achieve magnification. Although the illuminating wavelength was 650 nm, the 50 nm grating was easily resolved. This showed a nearly 5-fold improvement over the Abbe resolution limit of 232 nm that should have been the smallest obtained for the numerical aperture and wavelength used. This super-resolution microscopic imaging through optical heterodyning later came to be know by many as "structured illumination microscopy".
In addition to super-resolution optical microscopy, optical heterodyning could greatly improve optical modulators, increasing the density of information carried by optical fibers. It is also being applied in the creation of more accurate atomic clocks based on directly measuring the frequency of a laser beam. [notes 1]
Since optical frequencies are far beyond the manipulation capacity of any feasible electronic circuit, all visible frequency photon detectors are inherently energy detectors not oscillating electric field detectors. However, since energy detection is inherently "square-law" detection, it intrinsically mixes any optical frequencies present on the detector. Thus, sensitive detection of specific optical frequencies necessitates optical heterodyne detection, in which two different (close by) wavelengths of light illuminate the detector so that the oscillating electrical output corresponds to the difference between their frequencies. This allows extremely narrow band detection (much narrower than any possible color filter can achieve) as well as precision measurements of phase and frequency of a light signal relative to a reference light source, as in a laser Doppler vibrometer.
This phase sensitive detection has been applied for Doppler measurements of wind speed, and imaging through dense media. The high sensitivity against background light is especially useful for lidar.
In optical Kerr effect (OKE) spectroscopy, optical heterodyning of the OKE signal and a small part of the probe signal produces a mixed signal consisting of probe, heterodyne OKE-probe and homodyne OKE signal. The probe and homodyne OKE signals can be filtered out, leaving the heterodyne frequency signal for detection.
Heterodyne detection is often used in interferometry but usually confined to single point detection rather than widefield interferometry, however, widefield heterodyne interferometry is possible using a special camera. [17] Using this technique which a reference signal extracted from a single pixel it is possible to build a highly stable widefield heterodyne interferometer by removing the piston phase component caused by microphonics or vibrations of the optical components or object. [18]
Heterodyning is based on the trigonometric identity:
The product on the left hand side represents the multiplication ("mixing") of a sine wave with another sine wave (both produced by cosine functions). The right hand side shows that the resulting signal is the sum of two sinusoidal terms, one at the sum of the two original frequencies, and one at the difference, which can be dealt with separately, since their (large) frequency difference makes it easy to cleanly filter out one signal's frequency, while leaving the other signal unchanged.
Using this trigonometric identity, the result of multiplying two cosine wave signals and at different frequencies and can be calculated:
The result is the sum of two sinusoidal signals, one at the sum f1 + f2 and one at the difference f1 − f2 of the original frequencies.
The two signals are combined in a device called a mixer . As seen in the previous section, an ideal mixer would be a device that multiplies the two signals. Some widely used mixer circuits, such as the Gilbert cell, operate in this way, but they are limited to lower frequencies. However, any nonlinear electronic component also multiplies signals applied to it, producing heterodyne frequencies in its output—so a variety of nonlinear components serve as mixers. A nonlinear component is one in which the output current or voltage is a nonlinear function of its input. Most circuit elements in communications circuits are designed to be linear. This means they obey the superposition principle; if is the output of a linear element with an input of :
So if two sine wave signals at frequencies f1 and f2 are applied to a linear device, the output is simply the sum of the outputs when the two signals are applied separately with no product terms. Thus, the function must be nonlinear to create mixer products. A perfect multiplier only produces mixer products at the sum and difference frequencies (f1 ± f2), but more general nonlinear functions produce higher order mixer products: n⋅f1 + m⋅f2 for integers n and m. Some mixer designs, such as double-balanced mixers, suppress some high order undesired products, while other designs, such as harmonic mixers exploit high order differences.
Examples of nonlinear components that are used as mixers are vacuum tubes and transistors biased near cutoff (class C), and diodes. Ferromagnetic core inductors driven into saturation can also be used at lower frequencies. In nonlinear optics, crystals that have nonlinear characteristics are used to mix laser light beams to create optical heterodyne frequencies.
To demonstrate mathematically how a nonlinear component can multiply signals and generate heterodyne frequencies, the nonlinear function can be expanded in a power series (MacLaurin series):
To simplify the math, the higher order terms above α2 are indicated by an ellipsis () and only the first terms are shown. Applying the two sine waves at frequencies ω1 = 2πf1 and ω2 = 2πf2 to this device:
It can be seen that the second term above contains a product of the two sine waves. Simplifying with trigonometric identities:
Which leaves the two heterodyne frequencies among the many terms:
along with many other terms not shown.
In addition to components with frequencies at the sum ω1 + ω2 and difference ω1 − ω2 of the two original frequencies, shown above, the output also contains sinusoidal terms at the original frequencies and terms at multiples of the original frequencies 2 ω1 ,2 ω2 ,3 ω1 ,3 ω2 , etc., called harmonics . It also contains much more complicated terms at frequencies of M ω1 + N ω2 , called intermodulation products. These unwanted frequencies, along with the unwanted heterodyne frequency, must be removed from the mixer output by an electronic filter, to leave the desired heterodyne frequency.
An electronic mixer is a device that combines two or more electrical or electronic signals into one or two composite output signals. There are two basic circuits that both use the term mixer, but they are very different types of circuits: additive mixers and multiplicative mixers. Additive mixers are also known as analog adders to distinguish from the related digital adder circuits.
A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by French radio engineer and radio manufacturer Lucien Lévy. Virtually all modern radio receivers use the superheterodyne principle.
A Costas loop is a phase-locked loop (PLL) based circuit which is used for carrier frequency recovery from suppressed-carrier modulation signals and phase modulation signals. It was invented by John P. Costas at General Electric in the 1950s. Its invention was described as having had "a profound effect on modern digital communications". The primary application of Costas loops is in wireless receivers. Its advantage over other PLL-based detectors is that at small deviations the Costas loop error voltage is as compared to . This translates to double the sensitivity and also makes the Costas loop uniquely suited for tracking Doppler-shifted carriers, especially in OFDM and GPS receivers.
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency. And by incorporating a frequency divider, a PLL can generate a stable frequency that is a multiple of the input frequency.
A regenerative circuit is an amplifier circuit that employs positive feedback. Some of the output of the amplifying device is applied back to its input to add to the input signal, increasing the amplification. One example is the Schmitt trigger, but the most common use of the term is in RF amplifiers, and especially regenerative receivers, to greatly increase the gain of a single amplifier stage.
A product detector is a type of demodulator used for AM and SSB signals. Rather than converting the envelope of the signal into the decoded waveform like an envelope detector, the product detector takes the product of the modulated signal and a local oscillator, hence the name. A product detector is a frequency mixer.
A phase detector or phase comparator is a frequency mixer, analog multiplier or logic circuit that generates a signal which represents the difference in phase between two signal inputs.
A variable frequency oscillator (VFO) in electronics is an oscillator whose frequency can be tuned over some range. It is a necessary component in any tunable radio transmitter and in receivers that work by the superheterodyne principle. The oscillator controls the frequency to which the apparatus is tuned.
In electronics, a mixer, or frequency mixer, is an electrical circuit that creates new frequencies from two signals applied to it. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and difference of the original frequencies. Other frequency components may also be produced in a practical frequency mixer.
In a radio receiver, a beat frequency oscillator or BFO is a dedicated oscillator used to create an audio frequency signal from Morse code radiotelegraphy (CW) transmissions to make them audible. The signal from the BFO is mixed with the received signal to create a heterodyne or beat frequency which is heard as a tone in the speaker. BFOs are also used to demodulate single-sideband (SSB) signals, making them intelligible, by essentially restoring the carrier that was suppressed at the transmitter. BFOs are sometimes included in communications receivers designed for short wave listeners; they are almost always found in communication receivers for amateur radio, which often receive CW and SSB signals.
In electronics, a local oscillator (LO) is an electronic oscillator used with a mixer to change the frequency of a signal. This frequency conversion process, also called heterodyning, produces the sum and difference frequencies from the frequency of the local oscillator and frequency of the input signal. Processing a signal at a fixed frequency gives a radio receiver improved performance. In many receivers, the function of local oscillator and mixer is combined in one stage called a "converter" - this reduces the space, cost, and power consumption by combining both functions into one active device.
A direct-conversion receiver (DCR), also known as homodyne, synchrodyne, or zero-IF receiver, is a radio receiver design that demodulates the incoming radio signal using synchronous detection driven by a local oscillator whose frequency is identical to, or very close to the carrier frequency of the intended signal. This is in contrast to the standard superheterodyne receiver where this is accomplished only after an initial conversion to an intermediate frequency.
The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.
A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameters of the system at some frequencies, typically different from the natural frequency of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. The child's motions vary the moment of inertia of the swing as a pendulum. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency and damping .
A carrier recovery system is a circuit used to estimate and compensate for frequency and phase differences between a received signal's carrier wave and the receiver's local oscillator for the purpose of coherent demodulation.
The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was invented by Edwin Howard Armstrong of Columbia University, New York, NY. He inserted a tuned circuit in the output circuit of the Audion vacuum tube amplifier. By adjusting the tuning of this tuned circuit, Armstrong was able to dramatically increase the gain of the Audion amplifier. Further increase in tuning resulted in the Audion amplifier reaching self-oscillation.
Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.
In the physics of coupled oscillators, antiresonance, by analogy with resonance, is a pronounced minimum in the amplitude of an oscillator at a particular frequency, accompanied by a large, abrupt shift in its oscillation phase. Such frequencies are known as the system's antiresonant frequencies, and at these frequencies the oscillation amplitude can drop to almost zero. Antiresonances are caused by destructive interference, for example between an external driving force and interaction with another oscillator.
The Pound–Drever–Hall (PDH) technique is a widely used and powerful approach for stabilizing the frequency of light emitted by a laser by means of locking to a stable cavity. The PDH technique has a broad range of applications including interferometric gravitational wave detectors, atomic physics, and time measurement standards, many of which also use related techniques such as frequency modulation spectroscopy. Named after R. V. Pound, Ronald Drever, and John L. Hall, the PDH technique was described in 1983 by Drever, Hall and others working at the University of Glasgow and the U. S. National Bureau of Standards. This optical technique has many similarities to an older frequency-modulation technique developed by Pound for microwave cavities.
Superheterodyne transmitter is a radio or TV transmitter which uses an intermediate frequency signal in addition to radio frequency signal.