Laser Doppler vibrometer

Last updated
Basic components of a laser Doppler vibrometer LDV Schematic.png
Basic components of a laser Doppler vibrometer

A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact vibration measurements of a surface. The laser beam from the LDV is directed at the surface of interest, and the vibration amplitude and frequency are extracted from the Doppler shift of the reflected laser beam frequency due to the motion of the surface. The output of an LDV is generally a continuous analog voltage that is directly proportional to the target velocity component along the direction of the laser beam.

Contents

Some advantages of an LDV over similar measurement devices such as an accelerometer are that the LDV can be directed at targets that are difficult to access, or that may be too small or too hot to attach a physical transducer. Also, the LDV makes the vibration measurement without mass-loading the target, which is especially important for MEMS devices.

Principles of operation

A vibrometer is generally a two beam laser interferometer that measures the frequency (or phase) difference between an internal reference beam and a test beam. The most common type of laser in an LDV is the helium–neon laser, although laser diodes, fiber lasers, and Nd:YAG lasers are also used. The test beam is directed to the target, and scattered light from the target is collected and interfered with the reference beam on a photodetector, typically a photodiode. Most commercial vibrometers work in a heterodyne regime by adding a known frequency shift (typically 30–40 MHz) to one of the beams. This frequency shift is usually generated by a Bragg cell, or acousto-optic modulator. [1]

A schematic of a typical laser vibrometer is shown above. The beam from the laser, which has a frequency fo, is divided into a reference beam and a test beam with a beamsplitter. The test beam then passes through the Bragg cell, which adds a frequency shift fb. This frequency shifted beam then is directed to the target. The motion of the target adds a Doppler shift to the beam given by fd = 2*v(t)*cos(α)/λ, where v(t) is the velocity of the target as a function of time, α is the angle between the laser beam and the velocity vector, and λ is the wavelength of the light.

Light scatters from the target in all directions, but some portion of the light is collected by the LDV and reflected by the beamsplitter to the photodetector. This light has a frequency equal to fo + fb + fd. This scattered light is combined with the reference beam at the photo-detector. The initial frequency of the laser is very high (> 1014 Hz), which is higher than the response of the detector. The detector does respond, however, to the beat frequency between the two beams, which is at fb + fd (typically in the tens of MHz range).

The output of the photodetector is a standard frequency modulated (FM) signal, with the Bragg cell frequency as the carrier frequency, and the Doppler shift as the modulation frequency. This signal can be demodulated to derive the velocity vs. time of the vibrating target.

Applications

LDVs are used in a wide variety of scientific, industrial, and medical applications. Some examples are provided below:

Types

holographic vibrometry of the cantilevers of a musical box by frequency-division multiplexing CantileversLaserDopplerHolography.jpg
holographic vibrometry of the cantilevers of a musical box by frequency-division multiplexing

See also

Related Research Articles

The Doppler effect is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession.

<span class="mw-page-title-main">Lidar</span> Method of spatial measurement using laser

Lidar is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction or it may scan multiple directions, in which case it is known as lidar scanning or 3D laser scanning, a special combination of 3-D scanning and laser scanning. Lidar has terrestrial, airborne, and mobile applications.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Time of flight</span> Timing of substance within a medium

Time of flight (ToF) is the measurement of the time taken by an object, particle or wave to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a way to learn about the particle or medium's properties. The traveling object may be detected directly or indirectly. Time of flight technology has found valuable applications in the monitoring and characterization of material and biomaterials, hydrogels included.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term "OCT" to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

<span class="mw-page-title-main">Laser Doppler velocimetry</span> Optical method of measuring fluid flow

Laser Doppler velocimetry, also known as laser Doppler anemometry, is the technique of using the Doppler shift in a laser beam to measure the velocity in transparent or semi-transparent fluid flows or the linear or vibratory motion of opaque, reflecting surfaces. The measurement with laser Doppler anemometry is absolute and linear with velocity and requires no pre-calibration.

<span class="mw-page-title-main">Imaging radar</span> Application of radar which is used to create two-dimensional images

Imaging radar is an application of radar which is used to create two-dimensional images, typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images. In a radar image, one can see only the energy that was reflected back towards the radar antenna. The radar moves along a flight path and the area illuminated by the radar, or footprint, is moved along the surface in a swath, building the image as it does so.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Homodyne detection</span> Sensor implementation technique

In electrical engineering, homodyne detection is a method of extracting information encoded as modulation of the phase and/or frequency of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the signal if it carried null information. "Homodyne" signifies a single frequency, in contrast to the dual frequencies employed in heterodyne detection.

Laser-ultrasonics uses lasers to generate and detect ultrasonic waves. It is a non-contact technique used to measure materials thickness, detect flaws and carry out materials characterization. The basic components of a laser-ultrasonic system are a generation laser, a detection laser and a detector.

Holographic interferometry (HI) is a technique which enables static and dynamic displacements of objects with optically rough surfaces to be measured to optical interferometric precision. These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Electrophoretic light scattering is based on dynamic light scattering. The frequency shift or phase shift of an incident laser beam depends on the dispersed particles mobility. With dynamic light scattering, Brownian motion causes particle motion. With electrophoretic light scattering, oscillating electric field performs this function.

Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.

<span class="mw-page-title-main">Continuous-scan laser Doppler vibrometry</span> Method of measuring vibration across a surface

Continuous-scan laser Doppler vibrometry (CSLDV) is a method of using a laser Doppler vibrometer (LDV) in which the laser beam is swept across the surface of a test subject to capture the motion of a surface at many points simultaneously. This is different from scanning laser vibrometry (SLDV) in which the laser beam is kept at a fixed point during each measurement and quickly moved to a new position before acquiring the next measurement.

A laser surface velocimeter (LSV) is a non-contact optical speed sensor measuring velocity and length on moving surfaces. Laser surface velocimeters use the laser Doppler principle to evaluate the laser light scattered back from a moving object. They are widely used for process and quality control in industrial production processes.

<span class="mw-page-title-main">Laser Doppler imaging</span>

Laser Doppler imaging (LDI) is an imaging method that uses a laser beam to scan live tissue. When the laser light reaches the tissue, the moving blood cells generate doppler components in the reflected (backscattered) light. The light that comes back is detected using a photodiode that converts it into an electrical signal. Then the signal is processed to calculate a signal that is proportional to the tissue perfusion in the scanned area. When the process is completed, the signal is processed to generate an image that shows the perfusion on a screen.

<span class="mw-page-title-main">Laser scanning vibrometry</span> Device for measurement and imaging of vibration

The scanning laser vibrometer or scanning laser Doppler vibrometer, was first developed by the British loudspeaker company, Celestion, around 1979, further developed in the 1980s, and commercially introduced by Ometron, Ltd around 1986. It is an instrument for rapid non-contact measurement and imaging of vibration.

References

  1. Lutzmann, Peter; Göhler, Benjamin; Hill, Chris A.; Putten, Frank van (2016). "Laser vibration sensing at Fraunhofer IOSB: review and applications". Optical Engineering. 56 (3): 031215. Bibcode:2017OptEn..56c1215L. doi:10.1117/1.OE.56.3.031215. ISSN   0091-3286. S2CID   125618909.
  2. Kilpatrick, James M.; Markov, Vladimir (2008). "<title>Matrix laser vibrometer for transient modal imaging and rapid nondestructive testing</title>". In Tomasini, Enrico P (ed.). Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Vol. 7098. p. 709809. doi:10.1117/12.802929. S2CID   109520649.
  3. Bissinger, George.; Oliver, David (July 2007). "3-D Laser Vibrometry on Legendary Old Italian Violins" (PDF). Sound and Vibration. Retrieved 2013-01-24.
  4. GmbH, Polytec. "Civil Engineering". www.polytec.com.
  5. Baldini, Francesco; Moir, Christopher I.; Homola, Jiri; Lieberman, Robert A. (2009). "Miniature laser doppler velocimetry systems". In Baldini, Francesco; Homola, Jiri; Lieberman, Robert A (eds.). Optical Sensors 2009. Optical Sensors 2009. Vol. 7356. pp. 73560I–73560I–12. doi:10.1117/12.819324. S2CID   123294042.
  6. Huber, Alexander M; Schwab, C; Linder, T; Stoeckli, SJ; Ferrazzini, M; Dillier, N; Fisch, U (2001). "Evaluation of eardrum laser doppler interferometry as a diagnostic tool" (PDF). The Laryngoscope. 111 (3): 501–7. doi:10.1097/00005537-200103000-00022. PMID   11224783. S2CID   8296563.
  7. Fonseca, P.J.; Popov, A.V. (1994). "Sound radiation in a cicada: the role of different structures". Journal of Comparative Physiology A. 175 (3). doi:10.1007/BF00192994. S2CID   22549133.
  8. Sutton, C. M. (1990). "Accelerometer Calibration by Dynamic Position Measurement Using Heterodyne Laser Interferometry". Metrologia. 27 (3): 133–138. Bibcode:1990Metro..27..133S. doi:10.1088/0026-1394/27/3/004. S2CID   250757084.
  9. Abdullah Al Mamun; GuoXiao Guo; Chao Bi (2007). Hard Disk Drive: Mechatronics And Control. CRC Press. ISBN   978-0-8493-7253-7 . Retrieved 24 January 2013.
  10. "Vibrations Inc. – Laser Doppler Vibrometers". www.vibrationsinc.com.
  11. Xiang, Ning; Sabatier, James M. (2000). "<title>Land mine detection measurements using acoustic-to-seismic coupling</title>". In Dubey, Abinash C; Harvey, James F; Broach, J. Thomas; et al. (eds.). Detection and Remediation Technologies for Mines and Minelike Targets V. Detection and Remediation Technologies for Mines and Minelike Targets V. Vol. 4038. p. 645. doi:10.1117/12.396292. S2CID   12131129.
  12. Burgett, Richard D.; Bradley, Marshall R.; Duncan, Michael; Melton, Jason; Lal, Amit K.; Aranchuk, Vyacheslav; Hess, Cecil F.; Sabatier, James M.; Xiang, Ning (2003). "Mobile mounted laser Doppler vibrometer array for acoustic landmine detection". In Harmon, Russell S; Holloway, Jr, John H; Broach, J. T (eds.). Detection and Remediation Technologies for Mines and Minelike Targets VIII. Detection and Remediation Technologies for Mines and Minelike Targets VIII. Vol. 5089. p. 665. doi:10.1117/12.487186. S2CID   62559102.
  13. Lal, Amit; Aranchuk, Slava; Doushkina, Valentina; Hurtado, Ernesto; Hess, Cecil; Kilpatrick, Jim; l'Esperance, Drew; Luo, Nan; Markov, Vladimir (2006). "<title>Advanced LDV instruments for buried landmine detection</title>". In Broach, J. Thomas; Harmon, Russell S; Holloway, Jr, John H (eds.). Detection and Remediation Technologies for Mines and Minelike Targets XI. Detection and Remediation Technologies for Mines and Minelike Targets XI. Vol. 6217. p. 621715. doi:10.1117/12.668927. S2CID   62566351.
  14. Rui Li; Tao Wang; Zhigang Zhu; Wen Xiao (2011). "Vibration Characteristics of Various Surfaces Using an LDV for Long-Range Voice Acquisition". IEEE Sensors Journal. 11 (6): 1415. Bibcode:2011ISenJ..11.1415L. doi:10.1109/JSEN.2010.2093125. S2CID   37916336.
  15. Polytec, GmbH. "Material Research". www.polytec.com.
  16. Laura Rodríguez, High temperature surface measurement with Aries Laser Vibrometer, VELA. Original paper presented at AIVELA Conferences 2012.June 2012.
  17. "Single-Point Vibrometers".
  18. 1 2 Verrier, Nicolas and Atlan, Michael. Optics Letters 5 (2013); https://doi.org/10.1364/ol.38.000739; https://arxiv.org/abs/1211.5328
  19. 1 2 François Bruno, Jérôme Laurent, Daniel Royer, and Michael Atlan. Appl. Phys. Lett. 104, 083504 (2014); https://doi.org/10.1063/1.4866390; https://arxiv.org/abs/1401.5344
  20. Jorge Fernández Heredero, 3D Vibration Measurement using LSV. Original paper presented at AdMet 2012.February 2012.
  21. "OMS – Laser Doppler Vibrometers". www.omscorporation.com.
  22. Scalise, Lorenzo; Paone, Nicola (2000). "Self-mixing laser Doppler vibrometer". In Tomasini, Enrico P (ed.). Fourth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Fourth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. Vol. 4072. pp. 25–36. doi:10.1117/12.386763. S2CID   119778488.
  23. Heterodyned self-mixing laser diode vibrometer – US Patent 5838439 Archived 2011-06-12 at the Wayback Machine . Issued on November 17, 1998. Patentstorm.us. Retrieved on 2013-06-17.