Laser Doppler imaging

Last updated
Laser Doppler imaging
LaserDopplerHolographyRetinaONH.gif
Microangiography of the optic disc region of the human retina, by laser Doppler imaging. The image was rendered computationally by optical wave propagation and measurement of optical fluctuations.
Purposemeasure blood flow in eye
Based on Digital holography

Laser Doppler imaging (LDI) is an imaging method that uses a laser beam to scan live tissue. When the laser light reaches the tissue, the moving blood cells generate doppler components in the reflected (backscattered) light. The light that comes back is detected using a photodiode that converts it into an electrical signal. Then the signal is processed to calculate a signal that is proportional to the tissue perfusion in the scanned area. When the process is completed, the signal is processed to generate an image that shows the perfusion on a screen. [1]

Contents

The laser doppler effect was first used to measure microcirculation by Stern M.D. in 1975. [2] [3] And it is used widely in medicine, some representative research work about it are these: [4] [5] [6]

Use in ophthalmology

Blood flow pulse wave in the central retinal artery (red) and vein (blue), measured by laser Doppler holography in the eye fundus of a healthy volunteer. VIM LDH.jpg
Blood flow pulse wave in the central retinal artery (red) and vein (blue), measured by laser Doppler holography in the eye fundus of a healthy volunteer.

The eye offers a unique opportunity for the non-invasive exploration of cardiovascular diseases. LDI by digital holography can measure blood flow in the retina and choroid. [7] In particular, the choroid is a highly vascularized tissue supplying the retinal pigment epithelium and photoreceptors. Yet investigating the anatomy and flow of the choroid remains challenging. LDI provides high-contrast visualization of local blood flow in choroidal vessels in humans, with a spatial resolution comparable to state-of-the-art indocyanine green angiography. [8] Differences in blood pressure drive the flow of blood throughout the circulation. The rate of mean blood flow depends on both blood pressure and the hemodynamic resistance to flow presented by the blood vessels. LDI can enable mapping of the local arterial resistivity index, and the possibility to perform unambiguous identification of retinal arteries and veins on the basis of their systole-diastole variations, and reveal ocular hemodynamics in human eyes. [9]

Measurement of surface waves on the skin

Holographic photoplethysmogram: laser Doppler imaging of pulse waves on the surface of the hand. Hand Emmanuel gain6 color 9 35.gif
Holographic photoplethysmogram: laser Doppler imaging of pulse waves on the surface of the hand.

The local velocity of blood flow measured by laser Doppler holography in the digit (photoplethysmogram) and the eye fundus has a pulse-shaped profile with time. These remote pulse wave measurements can be done clinically to reveal hemodynamics in arteries and veins and can be readily measured non-invasively. Principal component analysis of digital holograms [10] is an efficient way of performing temporal demodulation of digital holograms reconstructed from on-axis interferograms and can be used to reveal surface waves on the hand.

Use in obstetrics and gynaecology

LDI provides a direct measure of female sexual response that does not require genital contact; signals are gathered at a depth of two to three millimetres below the skin's surface. [11] Two studies have suggested that LDI is a valid measure of female sexual arousal. [11] [12] Waxman and Pukall [11] showed that LDI has discriminant validity; that is, it can differentiate sexual response from neutral, positive, and negative mood induced states. Compared to vaginal photoplethysmography (VPG), LDI is advantageous because it does not require genital contact. Also, LDI provides a direct measure of vasocongestion and has an absolute unit of measurement, consisting of flux or units of blood flow. The disadvantages of LDI are that it cannot provide a continuous measure of sexual response and the laser Doppler perfusion imager is much more costly that other methods of genital sexual arousal assessment, such as VPG. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Hypertensive retinopathy</span> Medical condition

Hypertensive retinopathy is damage to the retina and retinal circulation due to high blood pressure.

Hemodynamics or haemodynamics are the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms of autoregulation, just as hydraulic circuits are controlled by control systems. The hemodynamic response continuously monitors and adjusts to conditions in the body and its environment. Hemodynamics explains the physical laws that govern the flow of blood in the blood vessels.

<span class="mw-page-title-main">Choroid</span> Vascular layer of the eye, containing connective tissue, and lying between the retina and the sclera

The choroid, also known as the choroidea or choroid coat, is a part of the uvea, the vascular layer of the eye. It contains connective tissues, and lies between the retina and the sclera. The human choroid is thickest at the far extreme rear of the eye, while in the outlying areas it narrows to 0.1 mm. The choroid provides oxygen and nourishment to the outer layers of the retina. Along with the ciliary body and iris, the choroid forms the uveal tract.

<span class="mw-page-title-main">Photoplethysmogram</span> Chart of tissue blood volume changes

A photoplethysmogram (PPG) is an optically obtained plethysmogram that can be used to detect blood volume changes in the microvascular bed of tissue. A PPG is often obtained by using a pulse oximeter which illuminates the skin and measures changes in light absorption. A conventional pulse oximeter monitors the perfusion of blood to the dermis and subcutaneous tissue of the skin.

<span class="mw-page-title-main">Optic disc</span> Optic nerve head, the point of exit for ganglion cell axons leaving the eye

The optic disc or optic nerve head is the point of exit for ganglion cell axons leaving the eye. Because there are no rods or cones overlying the optic disc, it corresponds to a small blind spot in each eye.

<span class="mw-page-title-main">Laser Doppler velocimetry</span> Optical method of measuring fluid flow

Laser Doppler velocimetry, also known as laser Doppler anemometry, is the technique of using the Doppler shift in a laser beam to measure the velocity in transparent or semi-transparent fluid flows or the linear or vibratory motion of opaque, reflecting surfaces. The measurement with laser Doppler anemometry is absolute and linear with velocity and requires no pre-calibration.

<span class="mw-page-title-main">Velocimetry</span>

Velocimetry is the measurement of the velocity of fluids. This is a task often taken for granted, and involves far more complex processes than one might expect. It is often used to solve fluid dynamics problems, study fluid networks, in industrial and process control applications, as well as in the creation of new kinds of fluid flow sensors. Methods of velocimetry include particle image velocimetry and particle tracking velocimetry, Molecular tagging velocimetry, laser-based interferometry, ultrasonic Doppler methods, Doppler sensors, and new signal processing methodologies.

Medical optical imaging is the use of light as an investigational imaging technique for medical applications, pioneered by American Physical Chemist Britton Chance. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy, laser Doppler imaging, and optical coherence tomography. Because light is an electromagnetic wave, similar phenomena occur in X-rays, microwaves, and radio waves.

<span class="mw-page-title-main">Central serous chorioretinopathy</span> Eye disease characterized by leakage of fluid under the retina

Central serous chorioretinopathy, also known as central serous retinopathy (CSR), is an eye disease that causes visual impairment, often temporary, usually in one eye. When the disorder is active it is characterized by leakage of fluid under the retina that has a propensity to accumulate under the central macula. This results in blurred or distorted vision (metamorphopsia). A blurred or gray spot in the central visual field is common when the retina is detached. Reduced visual acuity may persist after the fluid has disappeared.

<span class="mw-page-title-main">Central retinal artery</span>

The central retinal artery branches off the ophthalmic artery, running inferior to the optic nerve within its dural sheath to the eyeball.

Holographic interferometry (HI) is a technique which enables the measurements of static and dynamic displacements of objects with optically rough surfaces at optical interferometric precision. These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Digital holography refers to the acquisition and processing of holograms with a digital sensor array, typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .

Microangiography is a type of angiography that consists of the radiography of small blood or lymphatic vessels of an organ. While most other types of angiography cannot produce images of vessels smaller than 200 µm in diameter, microangiography does just that. A microangiographic image is the result of injection of a contrast medium into either the blood or the lymphatic system and, then, enlargement of the resulting radiograph. Thus, an image is obtained in which there is contrast between vessel and surrounding tissue. It is often used in order to detect microvascular lesions in organs. But, it has been suggested that microangiography can also be used to detect tumors through visualization of tumor-induced small blood vessels. This is because tumor growths require vascularization before they can develop more rapidly. A few of the commonly used types are fluorescent, silicone rubber, and synchrotron radiation microangiography.

<span class="mw-page-title-main">Digital holographic microscopy</span>

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

<span class="mw-page-title-main">Arterial resistivity index</span>

The arterial resistivity index, developed by Léandre Pourcelot, is a measure of pulsatile blood flow that reflects the resistance to blood flow caused by microvascular bed distal to the site of measurement.

<span class="mw-page-title-main">Branch retinal vein occlusion</span> Medical condition

Branch retinal vein occlusion is a common retinal vascular disease of the elderly. It is caused by the occlusion of one of the branches of central retinal vein.

<span class="mw-page-title-main">Premature heart beat</span> Medical condition

A premature heart beat or extrasystole is a heart rhythm disorder corresponding to a premature contraction of one of the chambers of the heart. Premature heart beats come in two different types: premature atrial contractions and premature ventricular contractions. Often they cause no symptoms but may present with fluttering in the chest or a skipped beat. They typically have no long term complications.

Optical coherence tomography angiography (OCTA) is a non-invasive imaging technique based on optical coherence tomography (OCT) developed to visualize vascular networks in the human retina, choroid, skin and various animal models. OCTA may make use of speckle variance optical coherence tomography.

Speckle variance optical coherence tomography (SV-OCT) is an imaging algorithm for functional optical imaging. Optical coherence tomography is an imaging modality that uses low-coherence interferometry to obtain high resolution, depth-resolved volumetric images. OCT can be used to capture functional images of blood flow, a technique known as optical coherence tomography angiography (OCT-A). SV-OCT is one method for OCT-A that uses the variance of consecutively acquired images to detect flow at the micron scale. SV-OCT can be used to measure the microvasculature of tissue. In particular, it is useful in ophthalmology for visualizing blood flow in retinal and choroidal regions of the eye, which can provide information on the pathophysiology of diseases.

Laser speckle contrast imaging (LSCI), also called laser speckle imaging (LSI), is an imaging modality based on the analysis of the blurring effect of the speckle pattern. The operation of LSCI is having a wide-field illumination of a rough surface through a coherent light source. Then using photodetectors such as CCD camera or CMOS sensors imaging the resulting laser speckle pattern caused by the interference of coherent light. In biomedical use, the coherent light is typically in the red or near-infrared region to ensure higher penetration depth. When scattering particles moving during the time, the interference caused by the coherent light will have fluctuations which will lead to the intensity variations detected via the photodetector, and this change of the intensity contain the information of scattering particles' motion. Through image the speckle patterns with finite exposure time, areas with scattering particles will appear blurred.

References

  1. Wardell, K.; Jakobsson, A.; Nilsson, G.E. (1993). "Laser Doppler perfusion imaging by dynamic light scattering". IEEE Transactions on Biomedical Engineering. 40 (4): 309–316. doi:10.1109/10.222322. PMID   8375866. S2CID   23260143.
  2. Leahy, M.J.; de Mul, F.F.M.; Nilsson, G.E.; Maniewski, R. (1999-06-01). "Principles and practice of the laser-Doppler perfusion technique" (PDF). Technology and Health Care. 7 (2–3): 143–162. doi:10.3233/THC-1999-72-306. PMID   10463304.
  3. Stern, M. D. (March 1975). "In vivo evaluation of microcirculation by coherent light scattering". Nature. 254 (5495): 56–58. Bibcode:1975Natur.254...56S. doi:10.1038/254056a0. PMID   1113878. S2CID   4181767.
  4. Leutenegger, Marcel; Martin-Williams, Erica; Harbi, Pascal; Thacher, Tyler; Raffoul, Wassim; André, Marc; Lopez, Antonio; Lasser, Philippe; Lasser, Theo (2011-06-01). "Real-time full field laser Doppler imaging". Biomedical Optics Express. 2 (6): 1470–1477. doi: 10.1364/BOE.2.001470 . PMC   3114216 . PMID   21698011.
  5. Grothusen, John R.; Schwartzman, Robert J. (September 2011). "Laser Doppler imaging: usefulness in chronic pain medicine". Pain Physician. 14 (5): 491–498. doi: 10.36076/ppj.2011/14/491 . PMID   21927054.
  6. Clark, Stuart; Campbell, Fiona; Moore, Tonia; Jayson, Malcolm I.V.; King, Terence A.; Herrick, Ariane L. (1999-05-01). "Laser Doppler Imaging—A New Technique for Quantifying Microcirculatory Flow in Patients with Primary Raynaud's Phenomenon and Systemic Sclerosis". Microvascular Research. 57 (3): 284–291. doi:10.1006/mvre.1998.2124. PMID   10329254.
  7. Puyo, L.; Paques, M.; Fink, M.; Sahel, J.-A.; Atlan, M. (2018). "In vivo laser Doppler holography of the human retina". Biomedical Optics Express. 9 (9): 4113–4129. arXiv: 1804.10066 . doi: 10.1364/BOE.9.004113 . PMC   6157768 . PMID   30615709.
  8. Puyo, Léo; Paques, Michel; Fink, Mathias; Sahel, José-Alain; Atlan, Michael (2019). "Choroidal vasculature imaging with laser Doppler holography". Biomedical Optics Express. 10 (2): 995–1012. arXiv: 2106.00608 . doi: 10.1364/BOE.10.000995 . PMC   6377881 . PMID   30800528.
  9. Puyo, Léo; Paques, Michel; Fink, Mathias; Sahel, José-Alain; Atlan, Michael (2019). "Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography". Biomedical Optics Express. 10 (10): 4942–4963. arXiv: 2106.00634 . doi: 10.1364/BOE.10.004942 . PMC   6788604 . PMID   31646021.
  10. Puyo, Leo; Bellonnet-Mottet, Loic; Martin, Antoine; Te, Francois; Paques, Michel; Atlan, Michael (2020). "Real-time digital holography of the retina by principal component analysis". arXiv: 2004.00923 [physics.med-ph].
  11. 1 2 3 4 Waxman, Samantha E.; Pukall, Caroline F. (2009). "Laser Doppler Imaging of Genital Blood Flow: A Direct Measure of Female Sexual Arousal". The Journal of Sexual Medicine. 6 (8): 2278–2285. doi:10.1111/j.1743-6109.2009.01326.x. PMID   19493290.
  12. Styles, SJ; MacLean, AB; Reid, WMN; Sultana, SR (2006). "Short communication: Laser Doppler perfusion imaging: A method for measuring female sexual response". BJOG: An International Journal of Obstetrics & Gynaecology. 113 (5): 599–601. doi:10.1111/j.1471-0528.2006.00894.x. PMID   16637901. S2CID   31409255.