Microcirculation

Last updated
Microcirculation
Capillary microcirculation.svg
Microcirculation in the capillary
Details
System Circulatory system
Artery Arteriole
Vein Venule
Identifiers
MeSH D008833
Anatomical terminology

The microcirculation is the circulation of the blood in the smallest blood vessels, the microvessels of the microvasculature present within organ tissues. [1] The microvessels include terminal arterioles, metarterioles, capillaries, and venules. Arterioles carry oxygenated blood to the capillaries, and blood flows out of the capillaries through venules into veins.[ citation needed ]

Contents

In addition to these blood vessels, the microcirculation also includes lymphatic capillaries and collecting ducts. The main functions of the microcirculation are the delivery of oxygen and nutrients and the removal of carbon dioxide (CO2). It also serves to regulate blood flow and tissue perfusion, thereby affecting blood pressure and responses to inflammation which can include edema (swelling).

Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes. The endothelium provides a smooth surface for the flow of blood and regulates the movement of water and dissolved materials in the interstitial plasma between the blood and the tissues.

The microcirculation contrasts with macrocirculation, which is the circulation of blood to and from the organs.

Structure

Microvessels

Blood flows away from the heart to arteries, which follow into arterioles, and then narrow further into capillaries. After the tissue has been perfused, capillaries branch and widen to become venules and then widen more and connect to become veins, which return blood to the heart. 2105 Capillary Bed.jpg
Blood flows away from the heart to arteries, which follow into arterioles, and then narrow further into capillaries. After the tissue has been perfused, capillaries branch and widen to become venules and then widen more and connect to become veins, which return blood to the heart.
Transmission electron microscope image of a capillary with a red blood cell within the pancreas. The capillary lining consists of long, thin endothelial cells, connected by tight junctions. A red blood cell in a capillary, pancreatic tissue - TEM.jpg
Transmission electron microscope image of a capillary with a red blood cell within the pancreas. The capillary lining consists of long, thin endothelial cells, connected by tight junctions.

The vessels on the arterial side of the microcirculation are called the arterioles, which are well innervated, are surrounded by smooth muscle cells, and are 10-50  μm in diameter. [2] Arterioles carry the blood to the capillaries, which are not innervated, have no smooth muscle, and are about 5-8 μm in diameter. Blood flows out of the capillaries into the venules, which have little smooth muscle and are 10-200 μm. The blood flows from the venules into the veins. Metarterioles connect arterioles and capillaries. A tributary to the venules is known as a thoroughfare channel.[ citation needed ]

The microcirculation has three major components: pre-capillary, capillary, and post-capillary. In the pre-capillary sector, arterioles, and precapillary sphincters participate. Their function is to regulate blood flow before it enters the capillaries and venules by the contraction and relaxation of the smooth muscle found on their walls. The second sector is the capillary sector, which is represented by the capillaries, where substance and gas exchange between blood and interstitial fluid takes place. Finally, the post-capillary sector is represented by the post-capillary venules, which are formed by a layer of endothelial cells that allow free movement of some substances. [3]

Microanatomy

Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes. The endothelium provides a smooth surface for the flow of blood and regulates the movement of water and dissolved materials in the interstitial plasma between the blood and the tissues. The endothelium also produces molecules that discourage the blood from clotting unless there is a leak. Pericyte cells can contract and decrease the size of the arterioles and thereby regulate blood flow and blood pressure.[ citation needed ]

Function

In addition to these blood vessels, the microcirculation also includes lymphatic capillaries and collecting ducts. The main functions of the microcirculation are the delivery of oxygen and nutrients and the removal of carbon dioxide (CO2). It also serves to regulate blood flow and tissue perfusion thereby affecting blood pressure and responses to inflammation which can include edema (swelling).[ citation needed ]

Regulation

The regulation of tissue perfusion occurs in microcirculation. [3] There, arterioles control the flow of blood to the capillaries. Arterioles contract and relax, varying their diameter and vascular tone, as the vascular smooth muscle responds to diverse stimuli. Distension of the vessels due to increased blood pressure is a fundamental stimulus for muscle contraction in arteriolar walls. As a consequence, microcirculation blood flow remains constant despite changes in systemic blood pressure. This mechanism is present in all tissues and organs of the human body. In addition, the nervous system participates in the regulation of microcirculation. The sympathetic nervous system activates the smaller arterioles, including terminals. Noradrenaline and adrenaline have effects on alpha and beta adrenergic receptors. Other hormones (catecholamine, renin-angiotensin, vasopressin, and atrial natriuretic peptide) circulate in the bloodstream and can have an effect on the microcirculation causing vasodilation or vasoconstriction. Many hormones and neuropeptides are released together with classical neurotransmitters. [1]

Arterioles respond to metabolic stimuli that are generated in the tissues. When tissue metabolism increases, catabolic products accumulate leading to vasodilation. The endothelium begins to control muscle tone and arteriolar blood flow tissue. Endothelial function in the circulation includes the activation and inactivation of circulating hormones and other plasma constituents. There are also synthesis and secretion of vasodilator and vasoconstrictor substances for modifying the width as necessary. Variations in the flow of blood that circulates by arterioles are capable of responses in endothelium. [1]

Capillary exchange

The term capillary exchange refers to all exchanges at microcirculatory level, most of which occurs in the capillaries. Sites where material exchange occurs between the blood and tissues are the capillaries, which branch out to increase the swap area, minimize the diffusion distance as well as maximize the surface area and the exchange time. [4]

Approximately, seven percent of the body's blood is in the capillaries which continuously exchange substances with the liquid outside these blood vessels, called interstitial fluid. This dynamic displacement of materials between the interstitial fluid and the blood is named capillary exchange. [5] These substances pass through capillaries through three different systems or mechanisms: diffusion, bulk flow, and transcytosis or vesicular transport. [3] The liquid and solid exchanges that take place in the microvasculature particularly involve capillaries and post-capillary venules and collecting venules.[ citation needed ]

Capillary walls allow the free flow of almost every substance in plasma. [6] The plasma proteins are the only exception, as they are too big to pass through. [5] The minimum number of un-absorbable plasma proteins that exit capillaries enter lymphatic circulation for returning later on to those blood vessels. Those proteins which leave capillaries use the first capillary exchange mechanism and the process of diffusion, which is caused by kinetic motion of molecules. [6]

Regulation

These exchanges of substances are regulated by different mechanisms. [7] These mechanisms work together and promote capillary exchange in the following way. First, molecules that diffuse are going to travel a short distance thanks to the capillary wall, the small diameter and the close proximity to each cell having a capillary. The short distance is important because the capillary diffusion rate decreases when the diffusion distance increases. Then, because of its large number (10-14 million capillaries), there is an incredible amount of surface area for exchange. However, this only has 5% of the total blood volume (250 ml 5000 ml). Finally, blood flows more slowly in the capillaries, given the extensive branching. [4]

Diffusion

Diffusion is the first and most important mechanism that allows the flow of small molecules across capillaries. The process depends on the difference of gradients between the interstitium and blood, with molecules moving to low concentrated spaces from high concentrated ones. [8] Glucose, amino acids, oxygen (O2) and other molecules exit capillaries by diffusion to reach the organism's tissues. Contrarily, carbon dioxide (CO2) and other wastes leave tissues and enter capillaries by the same process but in reverse. [5] Diffusion through the capillary walls depends on the permeability of the endothelial cells forming the capillary walls, which may be continuous, discontinuous, and fenestrated. [4] The Starling equation describes the roles of hydrostatic and osmotic pressures (the so-called Starling forces) in the movement of fluid across capillary endothelium. Lipids, which are transported by proteins, are too large to cross the capillary walls by diffusion, and have to rely on the other two methods. [9] [10]

Bulk flow

The second mechanism of capillary exchange is bulk flow. It is used by small, lipid-insoluble substances in order to cross. This movement depends on the physical characteristics of the capillaries. For example, continuous capillaries (tight structure) reduce bulk flow, fenestrated capillaries (perforated structure) increases bulk flow, and discontinuous capillaries (great intercellular gaps) enable bulk flow. In this case, the exchange of materials is determined by changes in pressure. [7] When the flow of substances goes from the bloodstream or the capillary to the interstitial space or interstitium, the process is called filtration. This kind of movement is favored by blood hydrostatic pressure (BHP) and interstitial fluid osmotic pressure (IFOP). [5] When substances move from the interstitial fluid to the blood in capillaries, the process is called reabsorption. The pressures that favor this movement are blood colloid osmotic pressure (BCOP) and interstitial fluid hydrostatic pressure (IFHP). [11] Whether a substance is filtrated or reabsorbed depends on the net filtration pressure (NFP), which is the difference between hydrostatic (BHP and IFHP) and osmotic pressures (IFOP and BCOP). [5] These pressures are known as the Starling forces. If the NFP is positive then there will be filtration, but if it is negative then reabsorption will occur. [12]

Transcytosis

The third capillary exchange mechanism is transcytosis, also called vesicular transport. [13] By this process, blood substances move across the endothelial cells that compose the capillary structure. Finally, these materials exit by exocytosis, the process by which vesicles go out from a cell to the interstitial space. Few substances cross by transcytosis: it is mainly used by large, lipid-insoluble molecules such as the insulin hormone. [14] Once vesicles exit the capillaries, they go to the interstitium. [14] Vesicles can go directly to a specific tissue or they can merge with other vesicles, so their contents are mixed. This intermixed material increases the functional capability of the vesicle. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Artery</span> Blood vessels that carry blood away from the heart

An artery is a blood vessel in humans and most other animals that takes oxygenated blood away from the heart in the systemic circulation to one or more parts of the body. Exceptions that carry deoxygenated blood are the pulmonary arteries in the pulmonary circulation that carry blood to the lungs for oxygenation, and the umbilical arteries in the fetal circulation that carry deoxygenated blood to the placenta.

<span class="mw-page-title-main">Blood vessel</span> Tubular structure of the circulatory system which transports blood

Blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away from the tissues. Blood vessels are needed to sustain life, because all of the body's tissues rely on their functionality.

<span class="mw-page-title-main">Capillary</span> Smallest type of blood vessel

A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the site of the exchange of many substances from the surrounding interstitial fluid, and they convey blood from the smallest branches of the arteries (arterioles) to those of the veins (venules). Other substances which cross capillaries include water, oxygen, carbon dioxide, urea, glucose, uric acid, lactic acid and creatinine. Lymph capillaries connect with larger lymph vessels to drain lymphatic fluid collected in microcirculation.

<span class="mw-page-title-main">Circulatory system</span> Organ system for circulating blood in animals

The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels. The circulatory system has two divisions, a systemic circulation or circuit, and a pulmonary circulation or circuit. Some sources use the terms cardiovascular system and vascular system interchangeably with the circulatory system.

<span class="mw-page-title-main">Oncotic pressure</span> Measure of pressure exerted by large dissolved molecules in biological fluids

Oncotic pressure, or colloid osmotic-pressure, is a type of osmotic pressure induced by the plasma proteins, notably albumin, in a blood vessel's plasma that causes a pull on fluid back into the capillary. Participating colloids displace water molecules, thus creating a relative water molecule deficit with water molecules moving back into the circulatory system within the lower venous pressure end of capillaries.

<span class="mw-page-title-main">Nephron</span> Microscopic structural and functional unit of the kidney

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

Hemodynamics or haemodynamics are the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms of autoregulation, just as hydraulic circuits are controlled by control systems. The hemodynamic response continuously monitors and adjusts to conditions in the body and its environment. Hemodynamics explains the physical laws that govern the flow of blood in the blood vessels.

<span class="mw-page-title-main">Lymph</span> Fluid that circulates throughout the lymphatic system

Lymph is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to be recirculated. At the origin of the fluid-return process, interstitial fluid—the fluid between the cells in all body tissues—enters the lymph capillaries. This lymphatic fluid is then transported via progressively larger lymphatic vessels through lymph nodes, where substances are removed by tissue lymphocytes and circulating lymphocytes are added to the fluid, before emptying ultimately into the right or the left subclavian vein, where it mixes with central venous blood.

<span class="mw-page-title-main">Extracellular fluid</span> Body fluid outside the cells of a multicellular organism

In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 50–60% of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells.

<span class="mw-page-title-main">Vasodilation</span> Widening of blood vessels

Vasodilation, also known as vasorelaxation, is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, which is the narrowing of blood vessels.

<span class="mw-page-title-main">Arteriole</span> Small arteries in the microcirculation

An arteriole is a small-diameter blood vessel in the microcirculation that extends and branches out from an artery and leads to capillaries.

<span class="mw-page-title-main">Venule</span> Very small blood vessel in the microcirculation

A venule is a very small vein in the microcirculation that allows blood to return from the capillary beds to drain into the venous system via increasingly larger veins. Post-capillary venules are the smallest of the veins with a diameter of between 10 and 30 micrometres (μm). When the post-capillary venules increase in diameter to 50μm they can incorporate smooth muscle and are known as muscular venules. Veins contain approximately 70% of total blood volume, while about 25% is contained in the venules. Many venules unite to form a vein.

<span class="mw-page-title-main">Lymphatic vessel</span> Tubular vessels that are involved in the transport of lymph and lymphocytes

The lymphatic vessels are thin-walled vessels (tubes), structured like blood vessels, that carry lymph. As part of the lymphatic system, lymph vessels are complementary to the cardiovascular system. Lymph vessels are lined by endothelial cells, and have a thin layer of smooth muscle, and adventitia that binds the lymph vessels to the surrounding tissue. Lymph vessels are devoted to the propulsion of the lymph from the lymph capillaries, which are mainly concerned with the absorption of interstitial fluid from the tissues. Lymph capillaries are slightly bigger than their counterpart capillaries of the vascular system. Lymph vessels that carry lymph to a lymph node are called afferent lymph vessels, and those that carry it from a lymph node are called efferent lymph vessels, from where the lymph may travel to another lymph node, may be returned to a vein, or may travel to a larger lymph duct. Lymph ducts drain the lymph into one of the subclavian veins and thus return it to general circulation.

<span class="mw-page-title-main">Glomerulus (kidney)</span> Functional unit of nephron

The glomerulus is a network of small blood vessels (capillaries) known as a tuft, located at the beginning of a nephron in the kidney. Each of the two kidneys contains about one million nephrons. The tuft is structurally supported by the mesangium, composed of intraglomerular mesangial cells. The blood is filtered across the capillary walls of this tuft through the glomerular filtration barrier, which yields its filtrate of water and soluble substances to a cup-like sac known as Bowman's capsule. The filtrate then enters the renal tubule of the nephron.

Vascular resistance is the resistance that must be overcome to push blood through the circulatory system and create blood flow. The resistance offered by the systemic circulation is known as the systemic vascular resistance (SVR) or may sometimes be called by the older term total peripheral resistance (TPR), while the resistance offered by the pulmonary circulation is known as the pulmonary vascular resistance (PVR). Systemic vascular resistance is used in calculations of blood pressure, blood flow, and cardiac function. Vasoconstriction increases SVR, whereas vasodilation decreases SVR.

The Starling principle holds that extracellular fluid movements between blood and tissues are determined by differences in hydrostatic pressure and colloid osmotic (oncotic) pressure between plasma inside microvessels and interstitial fluid outside them. The Starling Equation, proposed many years after the death of Starling, describes that relationship in mathematical form and can be applied to many biological and non-biological semipermeable membranes. The classic Starling principle and the equation that describes it have in recent years been revised and extended.

Hyperaemia is the increase of blood flow to different tissues in the body. It can have medical implications but is also a regulatory response, allowing change in blood supply to different tissues through vasodilation. Clinically, hyperaemia in tissues manifests as erythema because of the engorgement of vessels with oxygenated blood. Hyperaemia can also occur due to a fall in atmospheric pressure outside the body. The term comes from Greek ὑπέρ (hupér) 'over', and αἷμα (haîma) 'blood'.

<span class="mw-page-title-main">Precapillary sphincter</span> Band of smooth muscle that adjusts blood flow into capillaries

A precapillary sphincter is a band of contractile mural cells either classified as smooth muscle or pericytes that adjusts blood flow into capillaries. They were originally described in the mesenteric microcirculation, and were thought to only reside there. At the point where each of the capillaries originates from an arteriole, contractile mural cells encircle the capillary. This is called the precapillary sphincter. The precapillary sphincter has now also been found in the brain, where it regulates blood flow to the capillary bed. The sphincter can open and close the entrance to the capillary, by which contraction causes blood flow in a capillary to change as vasomotion occurs. In some tissues, the entire capillary bed may be bypassed by blood flow through arteriovenous anastomoses or through preferential flow through metarterioles. If the sphincter is damaged or cannot contract, blood can flow into the capillary bed at high pressures. When capillary pressures are high, fluid passes out of the capillaries into the interstitial space, and edema or fluid swelling is the result.

An intercellular cleft is a channel between two cells through which molecules may travel and gap junctions and tight junctions may be present. Most notably, intercellular clefts are often found between epithelial cells and the endothelium of blood vessels and lymphatic vessels, also helping to form the blood-nerve barrier surrounding nerves. Intercellular clefts are important for allowing the transportation of fluids and small solute matter through the endothelium.

Microvasculature comprises the microvessels – venules and capillaries of the microcirculation, with a maximum average diameter of 0.3 millimeters. As the vessels decrease in size, they increase their surface-area-to-volume ratio. This allows surface properties to play a significant role in the function of the vessel.

References

  1. 1 2 3 Conti, Fiorenzo (13 April 2010). Fisiología Médica (1st ed.). Mc-Graw Hill. ISBN   978-970-10-7341-4.[ page needed ]
  2. Formaggia, Luca; Quarteroni, Alfio; Veneziani, Alessandro (2009). Cardiovascular mathematics: modeling and simulation of the circulatory system. p. 6. ISBN   8847011515 . Retrieved 1 March 2023.
  3. 1 2 3 Drucker, René. Medical physiology (1st ed.). Modern Manual. p. 137.
  4. 1 2 3 Sherwood, Lauralee (2005). Human Physiology. From cells to systems (7th ed.). Cengage learning. p. 361. ISBN   970-729-069-2.
  5. 1 2 3 4 5 6 Tortora, Gerard (4 January 2011). Principles of anatomy and physiology (13th ed.). Wiley & Sons, Inc. p. 811. ISBN   978-0470565100.
  6. 1 2 Hall, John (2011). Textbook of Medical Physiology (12th ed.). Elsevier Science Publishers. p. 184. ISBN   978-84-8086-819-8.
  7. 1 2 Klaubunde, Richard (3 November 2011). Cardiovascular physiology concepts (2nd ed.). Lippincott Williams & Wilkins. p. 181. ISBN   9781451113846.
  8. Johnson, Leonard (2 October 2003). Essential medical physiology (3rd ed.). Academic Press. p. 59. ISBN   978-0123875846.
  9. Scow, R. O; Blanchette-Mackie, E. J; Smith, L. C (1980). "Transport of lipid across capillary endothelium". Federation Proceedings. 39 (9): 2610–7. PMID   6995154.
  10. "Fluid Physiology: 4.1 Microcirculation".
  11. Scallan, Joshua (2010). Capillary Fluid Exchange: Regulation, Functions and Pathology (3rd ed.). Morgan & Claypool Life Sciences. p. 4. ISBN   9781615040667.
  12. Sicar, Sabyasachi (2008). Principles of medical physiology (1st ed.). Lippincott Williams & Wilkins. p. 259. ISBN   978-3-13-144061-7.
  13. Barret, Kim (5 April 2012). Ganong Medical Physiology (24th ed.). Mc-Graw Hill. ISBN   978-0071780032.
  14. 1 2 Shahid, Mohammad (January 2008). Physiology (1st ed.). Elsevier Health Sciences. p. 82. ISBN   978-0-7234-3388-0.