The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.
The propagation constant's value is expressed logarithmically, almost universally to the base e , rather than base 10 that is used in telecommunications in other situations. The quantity measured, such as voltage, is expressed as a sinusoidal phasor. The phase of the sinusoid varies with distance which results in the propagation constant being a complex number, the imaginary part being caused by the phase change.
The term "propagation constant" is somewhat of a misnomer as it usually varies strongly with ω. It is probably the most widely used term but there are a large variety of alternative names used by various authors for this quantity. These include transmission parameter, transmission function, propagation parameter, propagation coefficient and transmission constant. If the plural is used, it suggests that α and β are being referenced separately but collectively as in transmission parameters, propagation parameters, etc. In transmission line theory, α and β are counted among the "secondary coefficients", the term secondary being used to contrast to the primary line coefficients . The primary coefficients are the physical properties of the line, namely R,C,L and G, from which the secondary coefficients may be derived using the telegrapher's equation. In the field of transmission lines, the term transmission coefficient has a different meaning despite the similarity of name: it is the companion of the reflection coefficient.
The propagation constant, symbol γ, for a given system is defined by the ratio of the complex amplitude at the source of the wave to the complex amplitude at some distance x, such that,
Inverting the above equation and isolating γ results in the quotient of the complex amplitude ratio's natural logarithm and the distance x traveled:
Since the propagation constant is a complex quantity we can write:
where
That β does indeed represent phase can be seen from Euler's formula:
which is a sinusoid which varies in phase as θ varies but does not vary in amplitude because
The reason for the use of base e is also now made clear. The imaginary phase constant, i β, can be added directly to the attenuation constant, α, to form a single complex number that can be handled in one mathematical operation provided they are to the same base. Angles measured in radians require base e, so the attenuation is likewise in base e.
The propagation constant for conducting lines can be calculated from the primary line coefficients by means of the relationship
where
The propagation factor of a plane wave traveling in a linear media in the x direction is given by where
The sign convention is chosen for consistency with propagation in lossy media. If the attenuation constant is positive, then the wave amplitude decreases as the wave propagates in the x direction.
Wavelength, phase velocity, and skin depth have simple relationships to the components of the propagation constant:
In telecommunications, the term attenuation constant, also called attenuation parameter or attenuation coefficient , is the attenuation of an electromagnetic wave propagating through a medium per unit distance from the source. It is the real part of the propagation constant and is measured in nepers per metre. A neper is approximately 8.7 dB. Attenuation constant can be defined by the amplitude ratio
The propagation constant per unit length is defined as the natural logarithm of the ratio of the sending end current or voltage to the receiving end current or voltage, divided by the distance x involved:
The attenuation constant for conductive lines can be calculated from the primary line coefficients as shown above. For a line meeting the distortionless condition, with a conductance G in the insulator, the attenuation constant is given by
however, a real line is unlikely to meet this condition without the addition of loading coils and, furthermore, there are some frequency dependent effects operating on the primary "constants" which cause a frequency dependence of the loss. There are two main components to these losses, the metal loss and the dielectric loss.
The loss of most transmission lines are dominated by the metal loss, which causes a frequency dependency due to finite conductivity of metals, and the skin effect inside a conductor. The skin effect causes R along the conductor to be approximately dependent on frequency according to
Losses in the dielectric depend on the loss tangent (tan δ) of the material divided by the wavelength of the signal. Thus they are directly proportional to the frequency.
The attenuation constant for a particular propagation mode in an optical fiber is the real part of the axial propagation constant.
In electromagnetic theory, the phase constant, also called phase change constant, parameter or coefficient is the imaginary component of the propagation constant for a plane wave. It represents the change in phase per unit length along the path traveled by the wave at any instant and is equal to the real part of the angular wavenumber of the wave. It is represented by the symbol β and is measured in units of radians per unit length.
From the definition of (angular) wavenumber for transverse electromagnetic (TEM) waves in lossless media,
For a transmission line, the telegrapher's equations tells us that the wavenumber must be proportional to frequency for the transmission of the wave to be undistorted in the time domain. This includes, but is not limited to, the ideal case of a lossless line. The reason for this condition can be seen by considering that a useful signal is composed of many different wavelengths in the frequency domain. For there to be no distortion of the waveform, all these waves must travel at the same velocity so that they arrive at the far end of the line at the same time as a group. Since wave phase velocity is given by
it is proved that β is required to be proportional to ω. In terms of primary coefficients of the line, this yields from the telegrapher's equation for a distortionless line the condition
where L and C are, respectively, the inductance and capacitance per unit length of the line. However, practical lines can only be expected to approximately meet this condition over a limited frequency band.
In particular, the phase constant is not always equivalent to the wavenumber . The relation
applies to the TEM wave, which travels in free space or TEM-devices such as the coaxial cable and two parallel wires transmission lines. Nevertheless, it does not apply to the TE wave (transverse electric wave) and TM wave (transverse magnetic wave). For example, [2] in a hollow waveguide where the TEM wave cannot exist but TE and TM waves can propagate,
Here is the cutoff frequency. In a rectangular waveguide, the cutoff frequency is
where are the mode numbers for the rectangle's sides of length and respectively. For TE modes, (but is not allowed), while for TM modes .
The phase velocity equals
The term propagation constant or propagation function is applied to filters and other two-port networks used for signal processing. In these cases, however, the attenuation and phase coefficients are expressed in terms of nepers and radians per network section rather than per unit length. Some authors [3] make a distinction between per unit length measures (for which "constant" is used) and per section measures (for which "function" is used).
The propagation constant is a useful concept in filter design which invariably uses a cascaded section topology. In a cascaded topology, the propagation constant, attenuation constant and phase constant of individual sections may be simply added to find the total propagation constant etc.
The ratio of output to input voltage for each network is given by [4]
The terms are impedance scaling terms [5] and their use is explained in the image impedance article.
The overall voltage ratio is given by
Thus for n cascaded sections all having matching impedances facing each other, the overall propagation constant is given by
The concept of penetration depth is one of many ways to describe the absorption of electromagnetic waves. For the others, and their interrelationships, see the article: Mathematical descriptions of opacity.
In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.
The Smith chart, is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio frequency (RF) engineering to assist in solving problems with transmission lines and matching circuits.
In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
A transmission line which meets the Heaviside condition, named for Oliver Heaviside (1850–1925), and certain other conditions can transmit signals without dispersion and without distortion. The importance of the Heaviside condition is that it showed the possibility of dispersionless transmission of telegraph signals.In some cases, the performance of a transmission line can be improved by adding inductive loading to the cable.
The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
The telegrapher's equations are a set of two coupled, linear equations that predict the voltage and current distributions on a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. The resulting time domain equations are partial differential equations of both time and distance. In the frequency domain the independent variables are distance and either frequency, , or complex frequency, . The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors. The resulting frequency domain equations are ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.
Acoustic waves are a type of energy propagation that travels through a medium, such as air, water, or solid objects, by means of adiabatic compression and expansion. Key quantities describing these waves include acoustic pressure, particle velocity, particle displacement, and acoustic intensity. The speed of acoustic waves depends on the medium's properties, such as density and elasticity, with sound traveling at approximately 343 meters per second in air, 1480 meters per second in water, and varying speeds in solids. Examples of acoustic waves include audible sound from speakers, seismic waves causing ground vibrations, and ultrasound used for medical imaging. Understanding acoustic waves is crucial in fields like acoustics, physics, engineering, and medicine, with applications in sound design, noise reduction, and diagnostic imaging.
Image impedance is a concept used in electronic network design and analysis and most especially in filter design. The term image impedance applies to the impedance seen looking into a port of a network. Usually a two-port network is implied but the concept can be extended to networks with more than two ports. The definition of image impedance for a two-port network is the impedance, Zi 1, seen looking into port 1 when port 2 is terminated with the image impedance, Zi 2, for port 2. In general, the image impedances of ports 1 and 2 will not be equal unless the network is symmetrical with respect to the ports.
Constant k filters, also k-type filters, are a type of electronic filter designed using the image method. They are the original and simplest filters produced by this methodology and consist of a ladder network of identical sections of passive components. Historically, they are the first filters that could approach the ideal filter frequency response to within any prescribed limit with the addition of a sufficient number of sections. However, they are rarely considered for a modern design, the principles behind them having been superseded by other methodologies which are more accurate in their prediction of filter response.
m-derived filters or m-type filters are a type of electronic filter designed using the image method. They were invented by Otto Zobel in the early 1920s. This filter type was originally intended for use with telephone multiplexing and was an improvement on the existing constant k type filter. The main problem being addressed was the need to achieve a better match of the filter into the terminating impedances. In general, all filters designed by the image method fail to give an exact match, but the m-type filter is a big improvement with suitable choice of the parameter m. The m-type filter section has a further advantage in that there is a rapid transition from the cut-off frequency of the passband to a pole of attenuation just inside the stopband. Despite these advantages, there is a drawback with m-type filters; at frequencies past the pole of attenuation, the response starts to rise again, and m-types have poor stopband rejection. For this reason, filters designed using m-type sections are often designed as composite filters with a mixture of k-type and m-type sections and different values of m at different points to get the optimum performance from both types.
Filters designed using the image impedance methodology suffer from a peculiar flaw in the theory. The predicted characteristics of the filter are calculated assuming that the filter is terminated with its own image impedances at each end. This will not usually be the case; the filter will be terminated with fixed resistances. This causes the filter response to deviate from the theoretical. This article explains how the effects of image filter end terminations can be taken into account.
When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:
In the fields of nonlinear optics and fluid dynamics, modulational instability or sideband instability is a phenomenon whereby deviations from a periodic waveform are reinforced by nonlinearity, leading to the generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses.
The primary line constants are parameters that describe the characteristics of conductive transmission lines, such as pairs of copper wires, in terms of the physical electrical properties of the line. The primary line constants are only relevant to transmission lines and are to be contrasted with the secondary line constants, which can be derived from them, and are more generally applicable. The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide.
A substrate-integrated waveguide (SIW) is a synthetic rectangular electromagnetic waveguide formed in a dielectric substrate by densely arraying metallized posts or via holes that connect the upper and lower metal plates of the substrate. The waveguide can be easily fabricated with low-cost mass-production using through-hole techniques, where the post walls consists of via fences. SIW is known to have similar guided wave and mode characteristics to conventional rectangular waveguide with equivalent guide wavelength.
A frequency-selective surface (FSS) is any thin, repetitive surface designed to reflect, transmit or absorb electromagnetic fields based on the frequency of the field. In this sense, an FSS is a type of optical filter or metal-mesh optical filters in which the filtering is accomplished by virtue of the regular, periodic pattern on the surface of the FSS. Though not explicitly mentioned in the name, FSS's also have properties which vary with incidence angle and polarization as well - these are unavoidable consequences of the way in which FSS's are constructed. Frequency-selective surfaces have been most commonly used in the radio signals of the electromagnetic spectrum and find use in applications as diverse as the aforementioned microwave oven, antenna radomes and modern metamaterials. Sometimes frequency selective surfaces are referred to simply as periodic surfaces and are a 2-dimensional analog of the new periodic volumes known as photonic crystals.