Attenuation coefficient

Last updated

The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. [1] A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. [2] The (derived) SI unit of attenuation coefficient is the reciprocal metre (m−1). Extinction coefficient is another term for this quantity, [1] often used in meteorology and climatology. [3] Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit (e.g. one meter) thickness of material, so that an attenuation coefficient of 1 m−1 means that after passing through 1 metre, the radiation will be reduced by a factor of e , and for material with a coefficient of 2 m−1, it will be reduced twice by e, or e2. Other measures may use a different factor than e, such as the decadic attenuation coefficient below. The broad-beam attenuation coefficient counts forward-scattered radiation as transmitted rather than attenuated, and is more applicable to radiation shielding. The mass attenuation coefficient is the attenuation coefficient normalized by the density of the material.

Contents

Overview

The attenuation coefficient describes the extent to which the radiant flux of a beam is reduced as it passes through a specific material. It is used in the context of:

The attenuation coefficient is called the "extinction coefficient" in the context of

A small attenuation coefficient indicates that the material in question is relatively transparent, while a larger value indicates greater degrees of opacity. The attenuation coefficient is dependent upon the type of material and the energy of the radiation. Generally, for electromagnetic radiation, the higher the energy of the incident photons and the less dense the material in question, the lower the corresponding attenuation coefficient will be.

Mathematical definitions

Attenuation coefficient

The attenuation coefficient of a volume, denoted μ, is defined as [6]

where

Spectral hemispherical attenuation coefficient

The spectral hemispherical attenuation coefficient in frequency and spectral hemispherical attenuation coefficient in wavelength of a volume, denoted μν and μλ respectively, are defined as: [6]

where

Directional attenuation coefficient

The directional attenuation coefficient of a volume, denoted μΩ, is defined as [6]

where Le,Ω is the radiance.

Spectral directional attenuation coefficient

The spectral directional attenuation coefficient in frequency and spectral directional attenuation coefficient in wavelength of a volume, denoted μΩ,ν and μΩ,λ respectively, are defined as [6]

where

Absorption and scattering coefficients

When a narrow (collimated) beam passes through a volume, the beam will lose intensity due to two processes: absorption and scattering. Absorption indicates energy that is lost from the beam, while scattering indicates light that is redirected in a (random) direction, and hence is no longer in the beam, but still present, resulting in diffuse light.

The absorption coefficient of a volume, denoted μa, and the scattering coefficient of a volume, denoted μs, are defined the same way as the attenuation coefficient. [6]

The attenuation coefficient of a volume is the sum of absorption coefficient and scattering coefficients: [6]

Just looking at the narrow beam itself, the two processes cannot be distinguished. However, if a detector is set up to measure beam leaving in different directions, or conversely using a non-narrow beam, one can measure how much of the lost radiant flux was scattered, and how much was absorbed.

In this context, the "absorption coefficient" measures how quickly the beam would lose radiant flux due to the absorption alone, while "attenuation coefficient" measures the total loss of narrow-beam intensity, including scattering as well. "Narrow-beam attenuation coefficient" always unambiguously refers to the latter. The attenuation coefficient is at least as large as the absorption coefficient; they are equal in the idealized case of no scattering.

Mass attenuation, absorption, and scattering coefficients

The mass attenuation coefficient, mass absorption coefficient, and mass scattering coefficient are defined as [6]

where ρm is the mass density.

Napierian and decadic attenuation coefficients

Decibels

Engineering applications often express attenuation in the logarithmic units of decibels, or "dB", where 10 dB represents attenuation by a factor of 10. The units for attenuation coefficient are thus dB/m (or, in general, dB per unit distance). Note that in logarithmic units such as dB, the attenuation is a linear function of distance, rather than exponential. This has the advantage that the result of multiple attenuation layers can be found by simply adding up the dB loss for each individual passage. However, if intensity is desired, the logarithms must be converted back into linear units by using an exponential:

Naperian attenuation

The decadic attenuation coefficient or decadic narrow beam attenuation coefficient, denoted μ10, is defined as

Just as the usual attenuation coefficient measures the number of e-fold reductions that occur over a unit length of material, this coefficient measures how many 10-fold reductions occur: a decadic coefficient of 1 m−1 means 1 m of material reduces the radiation once by a factor of 10.

μ is sometimes called Napierian attenuation coefficient or Napierian narrow beam attenuation coefficient rather than just simply "attenuation coefficient". The terms "decadic" and "Napierian" come from the base used for the exponential in the Beer–Lambert law for a material sample, in which the two attenuation coefficients take part:

where

In case of uniform attenuation, these relations become

Cases of non-uniform attenuation occur in atmospheric science applications and radiation shielding theory for instance.

The (Napierian) attenuation coefficient and the decadic attenuation coefficient of a material sample are related to the number densities and the amount concentrations of its N attenuating species as

where

by definition of attenuation cross section and molar attenuation coefficient.

Attenuation cross section and molar attenuation coefficient are related by

and number density and amount concentration by

where NA is the Avogadro constant.

The half-value layer (HVL) is the thickness of a layer of material required to reduce the radiant flux of the transmitted radiation to half its incident magnitude. The half-value layer is about 69% (ln 2) of the penetration depth. Engineers use these equations predict how much shielding thickness is required to attenuate radiation to acceptable or regulatory limits.

Attenuation coefficient is also inversely related to mean free path. Moreover, it is very closely related to the attenuation cross section.

Other radiometric coefficients

QuantitySI unitsNotes
NameSym.
Hemispherical emissivity εRadiant exitance of a surface, divided by that of a black body at the same temperature as that surface.
Spectral hemispherical emissivity εν
ελ
Spectral exitance of a surface, divided by that of a black body at the same temperature as that surface.
Directional emissivity εΩRadiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface.
Spectral directional emissivity εΩ,ν
εΩ,λ
Spectral radiance emitted by a surface, divided by that of a black body at the same temperature as that surface.
Hemispherical absorptance ARadiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance".
Spectral hemispherical absorptance Aν
Aλ
Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance".
Directional absorptance AΩRadiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance".
Spectral directional absorptance AΩ,ν
AΩ,λ
Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance".
Hemispherical reflectance RRadiant flux reflected by a surface, divided by that received by that surface.
Spectral hemispherical reflectance Rν
Rλ
Spectral flux reflected by a surface, divided by that received by that surface.
Directional reflectance RΩRadiance reflected by a surface, divided by that received by that surface.
Spectral directional reflectance RΩ,ν
RΩ,λ
Spectral radiance reflected by a surface, divided by that received by that surface.
Hemispherical transmittance TRadiant flux transmitted by a surface, divided by that received by that surface.
Spectral hemispherical transmittance Tν
Tλ
Spectral flux transmitted by a surface, divided by that received by that surface.
Directional transmittance TΩRadiance transmitted by a surface, divided by that received by that surface.
Spectral directional transmittance TΩ,ν
TΩ,λ
Spectral radiance transmitted by a surface, divided by that received by that surface.
Hemispherical attenuation coefficient μm−1Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral hemispherical attenuation coefficient μν
μλ
m−1Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Directional attenuation coefficient μΩm−1Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral directional attenuation coefficient μΩ,ν
μΩ,λ
m−1Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.

See also

Related Research Articles

The Beer-Lambert law is commonly applied to chemical analysis measurements to determine the concentration of chemical species that absorb light. It is often referred to as Beer's law. In physics, the Bouguer–Lambert law is an empirical law which relates the extinction or attenuation of light to the properties of the material through which the light is travelling. It had its first use in astronomical extinction. The fundamental law of extinction is sometimes called the Beer-Bouguer-Lambert law or the Bouguer-Beer-Lambert law or merely the extinction law. The extinction law is also used in understanding attenuation in physical optics, for photons, neutrons, or rarefied gases. In mathematical physics, this law arises as a solution of the BGK equation.

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Optical depth</span> Physics concept

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Reflectance</span> Capacity of an object to reflect light

The reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the response of the electronic structure of the material to the electromagnetic field of light, and is in general a function of the frequency, or wavelength, of the light, its polarization, and the angle of incidence. The dependence of reflectance on the wavelength is called a reflectance spectrum or spectral reflectance curve.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

<span class="mw-page-title-main">Planck's law</span> Spectral density of light emitted by a black body

In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.

Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample ". Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". The term is used in many technical areas to quantify the results of an experimental measurement. While the term has its origin in quantifying the absorption of light, it is often entangled with quantification of light which is “lost” to a detector system through other mechanisms. What these uses of the term tend to have in common is that they refer to a logarithm of the ratio of a quantity of light incident on a sample or material to that which is detected after the light has interacted with the sample.

<span class="mw-page-title-main">Transmittance</span> Effectiveness of a material in transmitting radiant energy

In optical physics, transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre. It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required. The present article is largely focused on the condition of radiative equilibrium.

Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.

<span class="mw-page-title-main">Mass attenuation coefficient</span>

The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass. Thus, it characterizes how easily a mass of material can be penetrated by a beam of light, sound, particles, or other energy or matter. In addition to visible light, mass attenuation coefficients can be defined for other electromagnetic radiation, sound, or any other beam that can be attenuated. The SI unit of mass attenuation coefficient is the square metre per kilogram. Other common units include cm2/g and L⋅g−1⋅cm−1. Mass extinction coefficient is an old term for this quantity.

When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

In the study of heat transfer, absorptance of the surface of a material is its effectiveness in absorbing radiant energy. It is the ratio of the absorbed to the incident radiant power.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

In probability theory and statistics, the generalized multivariate log-gamma (G-MVLG) distribution is a multivariate distribution introduced by Demirhan and Hamurkaroglu in 2011. The G-MVLG is a flexible distribution. Skewness and kurtosis are well controlled by the parameters of the distribution. This enables one to control dispersion of the distribution. Because of this property, the distribution is effectively used as a joint prior distribution in Bayesian analysis, especially when the likelihood is not from the location-scale family of distributions such as normal distribution.

References

  1. 1 2 IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Attenuation coefficient ". doi : 10.1351/goldbook.A00516
  2. Serway, Raymond; Moses, Clement; Moyer, Curt (2005). Modern Physics. California, USA: Brooks/Cole. p. 529. ISBN   978-0-534-49339-4.
  3. "2nd Edition of the Glossary of Meteorology". American Meteorological Society . Retrieved 2015-11-03.
  4. ISO 20998-1:2006 "Measurement and characterization of particles by acoustic methods"
  5. Dukhin, A.S. and Goetz, P.J. "Ultrasound for characterizing colloids", Elsevier, 2002
  6. 1 2 3 4 5 6 7 "Thermal insulation — Heat transfer by radiation — Physical quantities and definitions". ISO 9288:1989. ISO catalogue. 1989. Retrieved 2015-03-15.