Dynamic synchronous transfer mode

Last updated

Dynamic synchronous transfer mode (DTM) is an optical networking technology standardized by the European Telecommunications Standards Institute (ETSI) in 2001 beginning with specification ETSI ES 201 803-1. DTM is a time-division multiplexing and a circuit-switching network technology that combines switching and transport. [1] It is designed to provide a guaranteed quality of service (QoS) for streaming video services, but can be used for packet-based services as well. It is marketed for professional media networks, mobile TV networks, digital terrestrial television (DTT) networks, in content delivery networks and in consumer oriented networks, such as "triple play" networks.

Contents

History

The DTM architecture was conceived in 1985 and developed at the Royal Institute of Technology (KTH) in Sweden. [2] It was published in February 1996. [3]

The research team was split into two spin-off companies, reflecting two different approaches to use the technology. One of these companies remains active in the field and delivers commercial products based on the DTM technology. Its name is Net Insight.

See also

Related Research Articles

<span class="mw-page-title-main">Asynchronous Transfer Mode</span> Digital telecommunications protocol for voice, video, and data

Asynchronous Transfer Mode (ATM) is a telecommunications standard defined by the American National Standards Institute and ITU-T for digital transmission of multiple types of traffic. ATM was developed to meet the needs of the Broadband Integrated Services Digital Network as defined in the late 1980s, and designed to integrate telecommunication networks. It can handle both traditional high-throughput data traffic and real-time, low-latency content such as telephony (voice) and video. ATM provides functionality that uses features of circuit switching and packet switching networks by using asynchronous time-division multiplexing.

In telecommunications, asynchronous communication is transmission of data, generally without the use of an external clock signal, where data can be transmitted intermittently rather than in a steady stream. Any timing required to recover data from the communication symbols is encoded within the symbols.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

<span class="mw-page-title-main">Integrated Services Digital Network</span> Set of communication standards

Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the digitalised circuits of the public switched telephone network. Work on the standard began in 1980 at Bell Labs and was formally standardized in 1988 in the CCITT "Red Book". By the time the standard was released, newer networking systems with much greater speeds were available, and ISDN saw relatively little uptake in the wider market. One estimate suggests ISDN use peaked at a worldwide total of 25 million subscribers at a time when 1.3 billion analog lines were in use. ISDN has largely been replaced with digital subscriber line (DSL) systems of much higher performance.

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

A network service access point address, defined in ISO/IEC 8348, is an identifying label for a service access point (SAP) used in OSI networking.

<span class="mw-page-title-main">Wide area network</span> Computer network that connects devices across a large distance and area

A wide area network (WAN) is a telecommunications network that extends over a large geographic area. Wide area networks are often established with leased telecommunication circuits.

In the 1980s, the telecommunications industry expected that digital services would follow much the same pattern as voice services did on the public switched telephone network, and conceived an end-to-end circuit switched service, known as Broadband Integrated Services Digital Network (B-ISDN).

<span class="mw-page-title-main">Synchronous optical networking</span> Standardized protocol

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

<span class="mw-page-title-main">Multiplexing</span> Method of combining multiple signals into one signal over a shared medium

In telecommunications and computer networking, multiplexing is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource - a physical transmission medium. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy in the 1870s, and is now widely applied in communications. In telephony, George Owen Squier is credited with the development of telephone carrier multiplexing in 1910.

<span class="mw-page-title-main">Time-division multiplexing</span> Multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. This method transmits two or more digital signals or analog signals over a common channel. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century.

In telecommunications, a transmission system is a system that transmits a signal from one place to another. The signal can be an electrical, optical or radio signal. The goal of a transmission system is to transmit data accurately and efficiently from point A to point B over a distance, using a variety of technologies such as copper cable and fiber optic cables, satellite links, and wireless communication technologies.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

The public switched telephone network (PSTN) is the aggregate of the world's telephone networks that are operated by national, regional, or local telephony operators. It provides infrastructure and services for public telecommunication. The network consists of telephone lines, fiber optic cables, microwave transmission links, cellular networks, communications satellites, and undersea telephone cables interconnected by switching centers, such as central offices, network tandems, and international gateways, which allow telephone users to communicate with each other.

Single-pair high-speed digital subscriber line (SHDSL) is a form of symmetric digital subscriber line (SDSL), a data communications technology for equal transmit and receive data rate over copper telephone lines, faster than a conventional voiceband modem can provide. As opposed to other DSL technologies, SHDSL employs trellis-coded pulse-amplitude modulation (TC-PAM). As a baseband transmission scheme, TC-PAM operates at frequencies that include those used by the analog voice plain old telephone service (POTS). As such, a frequency splitter, or DSL filter, cannot be used to allow a telephone line to be shared by both an SHDSL service and a POTS service at the same time. Support of symmetric data rates made SHDSL a popular choice by businesses for private branch exchange (PBX), virtual private network (VPN), web hosting and other data services.

DTM may refer to:


In computer networking and telecommunications, a pseudowire is an emulation of a point-to-point connection over a packet-switched network (PSN).

<span class="mw-page-title-main">Network on a chip</span> Electronic communication subsystem on an integrated circuit

A network on a chip or network-on-chip is a network-based communications subsystem on an integrated circuit ("microchip"), most typically between modules in a system on a chip (SoC). The modules on the IC are typically semiconductor IP cores schematizing various functions of the computer system, and are designed to be modular in the sense of network science. The network on chip is a router-based packet switching network between SoC modules.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

<span class="mw-page-title-main">Optical mesh network</span> Optical network using a mesh topology

An optical mesh network is a type of optical telecommunications network employing wired fiber-optic communication or wireless free-space optical communication in a mesh network architecture.

References

  1. ETSI ES 201 803-1 V1.1.1 Dynamic synchronous Transfer Mode (DTM); Part 1: System description. March 2001.
  2. Matthew N.O.Sadiku (2003). "6: Dynamic synchronous transfer mode". In Mohammad Ilyas; Hussein T. Mouftah (eds.). The handbook of optical communication networks. CRC Press. pp. 99–106. ISBN   978-0-8493-1333-2.
  3. C. Bohm; M. Hidell; P. Lindgren; L. Ramfelt.; Peter Sjödin (February 1996). "Fast circuit switching for the next generation of high performance networks". IEEE Journal on Selected Areas in Communications. 14 (2): 298–305. CiteSeerX   10.1.1.41.7011 . doi:10.1109/49.481937.

Further reading