Link layer

Last updated

In computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment.

Contents

Despite the different semantics of layering between the Internet protocol suite and OSI model, the link layer is sometimes described as a combination of the OSI's data link layer (layer 2) and physical layer (layer 1).

The link layer is described in RFC   1122 and RFC   1123. RFC 1122 considers local area network protocols such as Ethernet and other IEEE 802 networks (e.g. Wi-Fi), and framing protocols such as Point-to-Point Protocol (PPP) to belong to the link layer.

Definition in standards and textbooks

Local area networking standards such as Ethernet and IEEE 802.3 specifications use terminology from the seven-layer OSI model rather than the TCP/IP model. The TCP/IP model, in general, does not consider physical specifications, rather it assumes a working network infrastructure that can deliver media-level frames on the link. Therefore, RFC 1122 and RFC 1123, the definition of the TCP/IP model, do not discuss hardware issues and physical data transmission and set no standards for those aspects. Some textbook authors have supported the interpretation that physical data transmission aspects are part of the link layer. [1] [2] Others assumed that physical data transmission standards are not considered communication protocols, and are not part of the TCP/IP model. [3] [4] These authors assume a hardware layer or physical layer below the link layer, and several of them adopt the OSI term data link layer instead of link layer in a modified description of layering. In the predecessor to the TCP/IP model, the ARPAnet Reference Model (RFC 908, 1982), aspects of the link layer are referred to by several poorly defined terms, such as network-access layer, network-access protocol, as well as network layer, while the next higher layer is called internetwork layer. In some modern textbooks, network-interface layer, host-to-network layer and network-access layer occur as synonyms either to the link layer or the data link layer, often including the physical layer.

The link layer in the TCP/IP model is a descriptive realm of networking protocols that operate only on the local network segment (link) that a host is connected to. Such protocol packets are not routed to other networks. The link layer includes the protocols that define communication between local (on-link) network nodes which fulfill the purpose of maintaining link states between the local nodes, such as the local network topology, and that usually use protocols that are based on the framing of packets specific to the link types.

The core protocols specified by the Internet Engineering Task Force (IETF) in this layer are the Address Resolution Protocol (ARP), the Reverse Address Resolution Protocol (RARP), and the Neighbor Discovery Protocol (NDP), which is a facility delivering similar functionality as ARP for IPv6.

Relation to OSI model

The link layer of the TCP/IP model is often compared directly with the combination of the data link layer and the physical layer in the Open Systems Interconnection (OSI) protocol stack. Although they are congruent to some degree in technical coverage of protocols, they are not identical. The link layer in TCP/IP is still wider in scope and in principle a different concept and terminology of classification. This may be observed when certain protocols, such as ARP, which is confined to the link layer in the TCP/IP model, is often said to fit between OSI's data link layer and the network layer. In general, direct or strict comparisons should be avoided, because the layering in TCP/IP is not a principal design criterion and in general, is considered to be "harmful" (RFC 3439).

Another term sometimes encountered, network access layer, tries to suggest the closeness of this layer to the physical network. However, this use is misleading and non-standard, since the link layer implies functions that are wider in scope than just network access. Important link layer protocols are used to probe the topology of the local network, and discover routers and neighboring hosts, i.e. functions that go well beyond network access.

IETF standards

See also

Related Research Articles

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.

A MAC address is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) network model, MAC addresses are used in the medium access control protocol sublayer of the data link layer. As typically represented, MAC addresses are recognizable as six groups of two hexadecimal digits, separated by hyphens, colons, or without a separator.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g., Ethernet frame.

<span class="mw-page-title-main">OSI model</span> Model of communication of seven abstraction layers

The Open Systems Interconnection (OSI) model is a reference model from the International Organization for Standardization (ISO) that "provides a common basis for the coordination of standards development for the purpose of systems interconnection." In the OSI reference model, the communications between systems are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

A frame is a digital data transmission unit in computer networking and telecommunication. In packet switched systems, a frame is a simple container for a single network packet. In other telecommunications systems, a frame is a repeating structure supporting time-division multiplexing.

A multicast address is a logical identifier for a group of hosts in a computer network that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the link layer, such as Ethernet multicast, and at the internet layer for Internet Protocol Version 4 (IPv4) or Version 6 (IPv6) multicast.

The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given internet layer address, typically an IPv4 address. This mapping is a critical function in the Internet protocol suite. ARP was defined in 1982 by RFC 826, which is Internet Standard STD 37.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.

In the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers.

<span class="mw-page-title-main">Transport layer</span> Layer in the OSI and TCP/IP models providing host-to-host communication services for applications

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

An application layer is an abstraction layer that specifies the shared communication protocols and interface methods used by hosts in a communications network. An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. Although both models use the same term for their respective highest-level layer, the detailed definitions and purposes are different.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

The Subnetwork Access Protocol (SNAP) is a mechanism for multiplexing, on networks using IEEE 802.2 LLC, more protocols than can be distinguished by the eight-bit 802.2 Service Access Point (SAP) fields. SNAP supports identifying protocols by EtherType field values; it also supports vendor-private protocol identifier spaces. It is used with IEEE 802.3, IEEE 802.4, IEEE 802.5, IEEE 802.11 and other IEEE 802 physical network layers, as well as with non-IEEE 802 physical network layers such as FDDI that use 802.2 LLC.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

A communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity. The protocol defines the rules, syntax, semantics, and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

References