This article contains promotional content .(December 2019) |
An overlay network is a computer network that is layered on top of another (logical as opposed to physical) network. The concept of overlay networking is distinct from the traditional model of OSI layered networks, and almost always assumes that the underlay network is an IP network of some kind. [1]
Some examples of overlay networking technologies are, VXLAN, BGP VPNs, both Layer 2 and Layer 3, and IP over IP technologies, such as GRE or IPSEC Tunnels. IP over IP technologies, such as SD-WAN are a class of overlay network.
Nodes in an overlay network can be thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network. For example, distributed systems such as peer-to-peer networks are overlay networks because their nodes form networks over existing network connections. [2] [ citation needed ]
The Internet was originally built as an overlay upon the telephone network, while today (through the advent of VoIP), the telephone network is increasingly turning into an overlay network built on top of the Internet.[ citation needed ]
Overlay networks have a certain set of attributes, including separation of logical addressing, security and quality of service. Other optional attributes include resiliency/recovery, encryption and bandwidth control.
Many telcos use overlay networks to provide services over their physical infrastructure. In the networks that connect physically diverse sites (wide area networks, WANs), one common overlay network technology is BGP VPNs. These VPNs are provided in the form of a service to enterprises to connect their own sites and applications. The advantage of these kinds of overlay networks are that the telecom operator does not need to manage addressing or other enterprise specific network attributes.
Within data centers, it was more common to use VXLAN, however due to its complexity and the need to stitch Layer 2 VXLAN-based overlay networks to Layer 3 IP/BGP networks, it has become more common to use BGP within data centers to provide Layer 2 connectivity between virtual machines or Kubernetes clusters.
Enterprise private networks were first overlaid on telecommunication networks such as Frame Relay and Asynchronous Transfer Mode packet switching infrastructures but migration from these (now legacy) infrastructures to IP-based MPLS networks and virtual private networks started (2001~2002) and is now completed, with very few remaining Frame Relay or ATM networks.
From an enterprise point of view, while an overlay VPN service configured by the operator might fulfill their basic connectivity requirements, they lack flexibility. For example, connecting services from competitive operators, or an enterprise service over an internet service and securing that service is impossible with standard VPN technologies, hence the proliferation of SD-WAN overlay networks that allow enterprises to connect sites and users regardless of the network access type they have.
The Internet is the basis for more overlaid networks that can be constructed in order to permit routing of messages to destinations not specified by an IP address. For example, distributed hash tables can be used to route messages to a node having a specific logical address, whose IP address is not known in advance.
Guaranteeing bandwidth through marking traffic has multiple solutions, including IntServ and DiffServ. IntServ requires per-flow tracking and consequently causes scaling issues in routing platforms. It has not been widely deployed. DiffServ has been widely deployed in many operators as a method to differentiate traffic types. DiffServ itself provides no guarantee of throughput, it does allow the network operator to decide which traffic is higher priority, and hence will be forwarded first in congestion situations.
Overlay networks implement a much finer granularity of quality of service, allowing enterprise users to decide on an application and user or site basis which traffic should be prioritised.
Overlay networks can be incrementally deployed at end-user sites or on hosts running the overlay protocol software, without cooperation from ISPs. The overlay has no control over how packets are routed in the underlying network between two overlay nodes, but it can control, for example, the sequence of overlay nodes a message traverses before reaching its destination.
For example, Akamai Technologies manages an overlay network that provides reliable, efficient content delivery (a kind of multicast).
The objective of resilience in telecommunications networks is to enable automated recovery during failure events in order to maintain a wanted service level or availability. As telecommunications networks are built in a layered fashion, resilience can be used in the physical, optical, IP or session/application layers. Each layer relies on the resilience features of the layer below it. Overlay IP networks in the form of SD-WAN services therefore rely on the physical, optical and underlying IP services they are transported over. Application layer overlays depend on the all the layers below them. The advantage of overlays are that they are more flexible/programmable than traditional network infrastructure, which outweighs the disadvantages of additional latency, complexity and bandwidth overheads.
Resilient Overlay Networks (RON) are architectures that allow distributed Internet applications to detect and recover from disconnection or interference. Current wide-area routing protocols that take at least several minutes to recover from are improved upon with this application layer overlay. The RON nodes monitor the Internet paths among themselves and will determine whether or not to reroute packets directly over the Internet or over other RON nodes thus optimizing application-specific metrics. [3]
The Resilient Overlay Network has a relatively simple conceptual design. RON nodes are deployed at various locations on the Internet. These nodes form an application layer overlay that cooperates in routing packets. Each of the RON nodes monitors the quality of the Internet paths between each other and uses this information to accurately and automatically select paths from each packet, thus reducing the amount of time required to recover from poor quality of service. [3]
Overlay multicast is also known as End System or Peer-to-Peer Multicast. High bandwidth multi-source multicast among widely distributed nodes is a critical capability for a wide range of applications, including audio and video conferencing, multi-party games and content distribution. Throughout the last decade, a number of research projects have explored the use of multicast as an efficient and scalable mechanism to support such group communication applications. Multicast decouples the size of the receiver set from the amount of state kept at any single node and potentially avoids redundant communication in the network.
The limited deployment of IP Multicast, a best-effort network layer multicast protocol, has led to considerable interest in alternate approaches that are implemented at the application layer, using only end-systems. In an overlay or end-system multicast approach, participating peers organize themselves into an overlay topology for data delivery. Each edge in this topology corresponds to a unicast path between two end-systems or peers in the underlying internet. All multicast-related functionality is implemented at the peers instead of at routers, and the goal of the multicast protocol is to construct and maintain an efficient overlay for data transmission.
Overlay network protocols based on TCP/IP include:
Overlay network protocols based on UDP/IP include:
In computer networking, multicast is a type of group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast differs from physical layer point-to-multipoint communication.
Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.
Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.
A router is a computer and networking device that forwards data packets between computer networks, including internetworks such as the global Internet.
Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.
Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).
Anycast is a network addressing and routing methodology in which a single IP address is shared by devices in multiple locations. Routers direct packets addressed to this destination to the location nearest the sender, using their normal decision-making algorithms, typically the lowest number of BGP network hops. Anycast routing is widely used by content delivery networks such as web and name servers, to bring their content closer to end users.
In computer networks, a tunneling protocol is a communication protocol which allows for the movement of data from one network to another. They can, for example, allow private network communications to be sent across a public network, or for one network protocol to be carried over an incompatible network, through a process called encapsulation.
Virtual Private LAN Service (VPLS) is a way to provide Ethernet-based multipoint to multipoint communication over IP or MPLS networks. It allows geographically dispersed sites to share an Ethernet broadcast domain by connecting sites through pseudowires. The term sites includes multiplicities of both servers and clients. The technologies that can be used as pseudo-wire can be Ethernet over MPLS, L2TPv3 or even GRE. There are two IETF standards-track RFCs describing VPLS establishment.
The next-generation network (NGN) is a body of key architectural changes in telecommunication core and access networks. The general idea behind the NGN is that one network transports all information and services by encapsulating these into IP packets, similar to those used on the Internet. NGNs are commonly built around the Internet Protocol, and therefore the term all IP is also sometimes used to describe the transformation of formerly telephone-centric networks toward NGN.
anoNet is a decentralized friend-to-friend network built using VPNs and software BGP routers. anoNet works by making it difficult to learn the identities of others on the network allowing them to anonymously host IPv4 and IPv6 services. One of the primary goals of anoNet is to protect its participants' rights of speech and expression.
IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.
A routing protocol specifies how routers communicate with each other to distribute information that enables them to select paths between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability.
In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.
Virtual eXtensible LAN (VXLAN) is a network virtualization technology that uses a VLAN-like encapsulation technique to encapsulate OSI layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default IANA-assigned destination UDP port number, although many implementations that predate the IANA assignment use port 8472. VXLAN attempts to address the scalability problems associated with large cloud computing deployments. VXLAN endpoints, which terminate VXLAN tunnels and may be either virtual or physical switch ports, are known as VXLAN tunnel endpoints (VTEPs).
Distributed Overlay Virtual Ethernet (DOVE) is a tunneling and virtualization technology for computer networks, created and backed by IBM. DOVE allows creation of network virtualization layers for deploying, controlling, and managing multiple independent and isolated network applications over a shared physical network infrastructure.
Broadcast, unknown-unicast and multicast traffic is network traffic transmitted using one of three methods of sending data link layer network traffic to a destination of which the sender does not know the network address. This is achieved by sending the network traffic to multiple destinations on an Ethernet network. As a concept related to computer networking, it includes three types of Ethernet modes: broadcast, unicast and multicast Ethernet. BUM traffic refers to that kind of network traffic that will be forwarded to multiple destinations or that cannot be addressed to the intended destination only.
Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.
Ethernet VPN (EVPN) is a technology for carrying layer 2 Ethernet traffic as a virtual private network using wide area network protocols. EVPN technologies include Ethernet over MPLS and Ethernet over VXLAN.
{{cite book}}
: CS1 maint: multiple names: authors list (link)