In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow.
It is also called the Cantor ternary function, the Lebesgue function, [1] Lebesgue's singular function, the Cantor–Vitali function, the Devil's staircase, [2] the Cantor staircase function, [3] and the Cantor–Lebesgue function. [4] GeorgCantor ( 1884 ) introduced the Cantor function and mentioned that Scheeffer pointed out that it was a counterexample to an extension of the fundamental theorem of calculus claimed by Harnack. The Cantor function was discussed and popularized by Scheeffer (1884), Lebesgue (1904) and Vitali (1905).
To define the Cantor function , let be any number in and obtain by the following steps:
For example:
Equivalently, if is the Cantor set on [0,1], then the Cantor function can be defined as
This formula is well-defined, since every member of the Cantor set has a unique base 3 representation that only contains the digits 0 or 2. (For some members of , the ternary expansion is repeating with trailing 2's and there is an alternative non-repeating expansion ending in 1. For example, = 0.13 = 0.02222...3 is a member of the Cantor set). Since and , and is monotonic on , it is clear that also holds for all .
The Cantor function challenges naive intuitions about continuity and measure; though it is continuous everywhere and has zero derivative almost everywhere, goes from 0 to 1 as goes from 0 to 1, and takes on every value in between. The Cantor function is the most frequently cited example of a real function that is uniformly continuous (precisely, it is Hölder continuous of exponent α = log 2/log 3) but not absolutely continuous. It is constant on intervals of the form (0.x1x2x3...xn022222..., 0.x1x2x3...xn200000...), and every point not in the Cantor set is in one of these intervals, so its derivative is 0 outside of the Cantor set. On the other hand, it has no derivative at any point in an uncountable subset of the Cantor set containing the interval endpoints described above.
The Cantor function can also be seen as the cumulative probability distribution function of the 1/2-1/2 Bernoulli measure μ supported on the Cantor set: . This probability distribution, called the Cantor distribution, has no discrete part. That is, the corresponding measure is atomless. This is why there are no jump discontinuities in the function; any such jump would correspond to an atom in the measure.
However, no non-constant part of the Cantor function can be represented as an integral of a probability density function; integrating any putative probability density function that is not almost everywhere zero over any interval will give positive probability to some interval to which this distribution assigns probability zero. In particular, as Vitali (1905) pointed out, the function is not the integral of its derivative even though the derivative exists almost everywhere.
The Cantor function is the standard example of a singular function.
The Cantor function is also a standard example of a function with bounded variation but, as mentioned above, is not absolutely continuous. However, every absolutely continuous function is continuous with bounded variation.
The Cantor function is non-decreasing, and so in particular its graph defines a rectifiable curve. Scheeffer (1884) showed that the arc length of its graph is 2. Note that the graph of any nondecreasing function such that and has length not greater than 2. In this sense, the Cantor function is extremal.
Because the Lebesgue measure of the uncountably infinite Cantor set is 0, for any positive ε < 1 and δ, there exists a finite sequence of pairwise disjoint sub-intervals with total length < δ over which the Cantor function cumulatively rises more than ε.
In fact, for every δ > 0 there are finitely many pairwise disjoint intervals (xk,yk) (1 ≤ k ≤ M) with and .
Below we define a sequence {fn} of functions on the unit interval that converges to the Cantor function.
Let f0(x) = x.
Then, for every integer n≥ 0, the next function fn+1(x) will be defined in terms of fn(x) as follows:
Let fn+1(x) = 1/2 ×fn(3x), when 0 ≤ x ≤ 1/3 ;
Let fn+1(x) = 1/2, when 1/3 ≤ x ≤ 2/3 ;
Let fn+1(x) = 1/2 + 1/2 ×fn(3 x− 2), when 2/3 ≤ x ≤ 1.
The three definitions are compatible at the end-points 1/3 and 2/3, because fn(0) = 0 and fn(1) = 1 for every n, by induction. One may check that fn converges pointwise to the Cantor function defined above. Furthermore, the convergence is uniform. Indeed, separating into three cases, according to the definition of fn+1, one sees that
If f denotes the limit function, it follows that, for every n ≥ 0,
The Cantor function is closely related to the Cantor set. The Cantor set C can be defined as the set of those numbers in the interval [0, 1] that do not contain the digit 1 in their base-3 (triadic) expansion, except if the 1 is followed by zeros only (in which case the tail 1000 can be replaced by 0222 to get rid of any 1). It turns out that the Cantor set is a fractal with (uncountably) infinitely many points (zero-dimensional volume), but zero length (one-dimensional volume). Only the D-dimensional volume (in the sense of a Hausdorff-measure) takes a finite value, where is the fractal dimension of C. We may define the Cantor function alternatively as the D-dimensional volume of sections of the Cantor set
The Cantor function possesses several symmetries. For , there is a reflection symmetry
and a pair of magnifications, one on the left and one on the right:
and
The magnifications can be cascaded; they generate the dyadic monoid. This is exhibited by defining several helper functions. Define the reflection as
The first self-symmetry can be expressed as
where the symbol denotes function composition. That is, and likewise for the other cases. For the left and right magnifications, write the left-mappings
Then the Cantor function obeys
Similarly, define the right mappings as
Then, likewise,
The two sides can be mirrored one onto the other, in that
and likewise,
These operations can be stacked arbitrarily. Consider, for example, the sequence of left-right moves Adding the subscripts C and D, and, for clarity, dropping the composition operator in all but a few places, one has:
Arbitrary finite-length strings in the letters L and R correspond to the dyadic rationals, in that every dyadic rational can be written as both for integer n and m and as finite length of bits with Thus, every dyadic rational is in one-to-one correspondence with some self-symmetry of the Cantor function.
Some notational rearrangements can make the above slightly easier to express. Let and stand for L and R. Function composition extends this to a monoid, in that one can write and generally, for some binary strings of digits A, B, where AB is just the ordinary concatenation of such strings. The dyadic monoid M is then the monoid of all such finite-length left-right moves. Writing as a general element of the monoid, there is a corresponding self-symmetry of the Cantor function:
The dyadic monoid itself has several interesting properties. It can be viewed as a finite number of left-right moves down an infinite binary tree; the infinitely distant "leaves" on the tree correspond to the points on the Cantor set, and so, the monoid also represents the self-symmetries of the Cantor set. In fact, a large class of commonly occurring fractals are described by the dyadic monoid; additional examples can be found in the article on de Rham curves. Other fractals possessing self-similarity are described with other kinds of monoids. The dyadic monoid is itself a sub-monoid of the modular group
Note that the Cantor function bears more than a passing resemblance to Minkowski's question-mark function. In particular, it obeys the exact same symmetry relations, although in an altered form.
Let
be the dyadic (binary) expansion of the real number 0 ≤ y ≤ 1 in terms of binary digits bk∈ {0,1}. This expansion is discussed in greater detail in the article on the dyadic transformation. Then consider the function
For z = 1/3, the inverse of the function x = 2 C1/3(y) is the Cantor function. That is, y = y(x) is the Cantor function. In general, for any z < 1/2, Cz(y) looks like the Cantor function turned on its side, with the width of the steps getting wider as z approaches zero.
As mentioned above, the Cantor function is also the cumulative distribution function of a measure on the Cantor set. Different Cantor functions, or Devil's Staircases, can be obtained by considering different atom-less probability measures supported on the Cantor set or other fractals. While the Cantor function has derivative 0 almost everywhere, current research focusses on the question of the size of the set of points where the upper right derivative is distinct from the lower right derivative, causing the derivative to not exist. This analysis of differentiability is usually given in terms of fractal dimension, with the Hausdorff dimension the most popular choice. This line of research was started in the 1990s by Darst, [5] who showed that the Hausdorff dimension of the set of non-differentiability of the Cantor function is the square of the dimension of the Cantor set, . Subsequently Falconer [6] showed that this squaring relationship holds for all Ahlfors's regular, singular measures, i.e.Later, Troscheit [7] obtain a more comprehensive picture of the set where the derivative does not exist for more general normalized Gibb's measures supported on self-conformal and self-similar sets.
Hermann Minkowski's question mark function loosely resembles the Cantor function visually, appearing as a "smoothed out" form of the latter; it can be constructed by passing from a continued fraction expansion to a binary expansion, just as the Cantor function can be constructed by passing from a ternary expansion to a binary expansion. The question mark function has the interesting property of having vanishing derivatives at all rational numbers.
{{cite journal}}
: CS1 maint: DOI inactive as of September 2024 (link)In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation, or, equivalently,
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.
In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .
In mathematics, the inverse function of a function f is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by
In category theory, an epimorphism is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: Y → Z,
In mathematics, more specifically in harmonic analysis, Walsh functions form a complete orthogonal set of functions that can be used to represent any discrete function—just like trigonometric functions can be used to represent any continuous function in Fourier analysis. They can thus be viewed as a discrete, digital counterpart of the continuous, analog system of trigonometric functions on the unit interval. But unlike the sine and cosine functions, which are continuous, Walsh functions are piecewise constant. They take the values −1 and +1 only, on sub-intervals defined by dyadic fractions.
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno, although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician Louis François Antoine Arbogast had stated the formula in a calculus textbook, which is considered to be the first published reference on the subject.
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over its domain.
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. It maps quadratic irrational numbers to rational numbers on the unit interval, via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the rationals, given by Arnaud Denjoy in 1938. It also maps rational numbers to dyadic rationals, as can be seen by a recursive definition closely related to the Stern–Brocot tree.
The dyadic transformation is the mapping
In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder.
In mathematics, the blancmange curve is a self-affine fractal curve constructible by midpoint subdivision. It is also known as the Takagi curve, after Teiji Takagi who described it in 1901, or as the Takagi–Landsberg curve, a generalization of the curve named after Takagi and Georg Landsberg. The name blancmange comes from its resemblance to a Blancmange pudding. It is a special case of the more general de Rham curve.
In mathematics, a de Rham curve is a continuous fractal curve obtained as the image of the Cantor space, or, equivalently, from the base-two expansion of the real numbers in the unit interval. Many well-known fractal curves, including the Cantor function, Cesàro–Faber curve, Minkowski's question mark function, blancmange curve, and the Koch curve are all examples of de Rham curves. The general form of the curve was first described by Georges de Rham in 1957.
In mathematics, one normed vector space is said to be continuously embedded in another normed vector space if the inclusion function between them is continuous. In some sense, the two norms are "almost equivalent", even though they are not both defined on the same space. Several of the Sobolev embedding theorems are continuous embedding theorems.
An infinite-dimensional vector function is a function whose values lie in an infinite-dimensional topological vector space, such as a Hilbert space or a Banach space.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B.
In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.