In mathematics, the Menger sponge (also known as the Menger cube, Menger universal curve, Sierpinski cube, or Sierpinski sponge) [1] [2] [3] is a fractal curve. It is a three-dimensional generalization of the one-dimensional Cantor set and two-dimensional Sierpinski carpet. It was first described by Karl Menger in 1926, in his studies of the concept of topological dimension. [4] [5]
The construction of a Menger sponge can be described as follows:
The second iteration gives a level-2 sponge, the third iteration gives a level-3 sponge, and so on. The Menger sponge itself is the limit of this process after an infinite number of iterations.
The th stage of the Menger sponge, , is made up of smaller cubes, each with a side length of (1/3)n. The total volume of is thus . The total surface area of is given by the expression . [6] [7] Therefore, the construction's volume approaches zero while its surface area increases without bound. Yet any chosen surface in the construction will be thoroughly punctured as the construction continues so that the limit is neither a solid nor a surface; it has a topological dimension of 1 and is accordingly identified as a curve.
Each face of the construction becomes a Sierpinski carpet, and the intersection of the sponge with any diagonal of the cube or any midline of the faces is a Cantor set. The cross-section of the sponge through its centroid and perpendicular to a space diagonal is a regular hexagon punctured with hexagrams arranged in six-fold symmetry. [8] The number of these hexagrams, in descending size, is given by the following recurrence relation:, with . [9]
The sponge's Hausdorff dimension is log 20/log 3≅ 2.727. [10] The Lebesgue covering dimension of the Menger sponge is one, the same as any curve. Menger showed, in the 1926 construction, that the sponge is a universal curve , in that every curve is homeomorphic to a subset of the Menger sponge, where a curve means any compact metric space of Lebesgue covering dimension one; this includes trees and graphs with an arbitrary countable number of edges, vertices and closed loops, connected in arbitrary ways. Similarly, the Sierpinski carpet is a universal curve for all curves that can be drawn on the two-dimensional plane. The Menger sponge constructed in three dimensions extends this idea to graphs that are not planar and might be embedded in any number of dimensions.
In 2024, Broden, Nazareth, and Voth proved that all knots can also be found within a Menger sponge. [11]
The Menger sponge is a closed set; since it is also bounded, the Heine–Borel theorem implies that it is compact. It has Lebesgue measure 0. Because it contains continuous paths, it is an uncountable set.
Experiments also showed that cubes with a Menger sponge-like structure could dissipate shocks five times better for the same material than cubes without any pores. [12]
Formally, a Menger sponge can be defined as follows (using set intersection):
where is the unit cube and
MegaMenger was a project aiming to build the largest fractal model, pioneered by Matt Parker of Queen Mary University of London and Laura Taalman of James Madison University. Each small cube is made from six interlocking folded business cards, giving a total of 960 000 for a level-four sponge. The outer surfaces are then covered with paper or cardboard panels printed with a Sierpinski carpet design to be more aesthetically pleasing. [13] In 2014, twenty level-three Menger sponges were constructed, which combined would form a distributed level-four Menger sponge. [14]
A Jerusalem cube is a fractal object first described by Eric Baird in 2011. It is created by recursively drilling Greek cross-shaped holes into a cube. [15] [16] The construction is similar to the Menger sponge but with two different-sized cubes. The name comes from the face of the cube resembling a Jerusalem cross pattern. [17]
The construction of the Jerusalem cube can be described as follows:
Iterating an infinite number of times results in the Jerusalem cube.
Since the edge length of a cube of rank N is equal to that of 2 cubes of rank N+1 and a cube of rank N+2, it follows that the scaling factor must satisfy , therefore which means the fractal cannot be constructed using points on a rational lattice.
Since a cube of rank N gets subdivided into 8 cubes of rank N+1 and 12 of rank N+2, the Hausdorff dimension must therefore satisfy . The exact solution is
which is approximately 2.529
As with the Menger sponge, the faces of a Jerusalem cube are fractals [17] with the same scaling factor. In this case, the Hausdorff dimension must satisfy . The exact solution is
which is approximately 1.786
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.
In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computation of dimensions for highly irregular or "rough" sets, this dimension is also commonly referred to as the Hausdorff–Besicovitch dimension.
The Mandelbrot set is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified. It is popular for its aesthetic appeal and fractal structures. The set is defined in the complex plane as the complex numbers for which the function does not diverge to infinity when iterated starting at , i.e., for which the sequence , , etc., remains bounded in absolute value.
The Sierpiński carpet is a plane fractal first described by Wacław Sierpiński in 1916. The carpet is a generalization of the Cantor set to two dimensions; another such generalization is the Cantor dust.
The Sierpiński triangle, also called the Sierpiński gasket or Sierpiński sieve, is a fractal with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern reproducible at any magnification or reduction. It is named after the Polish mathematician Wacław Sierpiński but appeared as a decorative pattern many centuries before the work of Sierpiński.
The Kochsnowflake is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch.
In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the scale at which it is measured. It is also a measure of the space-filling capacity of a pattern, and it tells how a fractal scales differently, in a fractal (non-integer) dimension.
A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems. The dragon curve is probably most commonly thought of as the shape that is generated from repeatedly folding a strip of paper in half, although there are other curves that are called dragon curves that are generated differently.
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.
This is a list of fractal topics, by Wikipedia page, See also list of dynamical systems and differential equations topics.
Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit completely fill the unit square: thus their limit curve, also called the Sierpiński curve, is an example of a space-filling curve.
In mathematics, the T-square is a two-dimensional fractal. It has a boundary of infinite length bounding a finite area. Its name comes from the drawing instrument known as a T-square.
In mathematics, the term chaos game originally referred to a method of creating a fractal, using a polygon and an initial point selected at random inside it. The fractal is created by iteratively creating a sequence of points, starting with the initial random point, in which each point in the sequence is a given fraction of the distance between the previous point and one of the vertices of the polygon; the vertex is chosen at random in each iteration. Repeating this iterative process a large number of times, selecting the vertex at random on each iteration, and throwing out the first few points in the sequence, will often produce a fractal shape. Using a regular triangle and the factor 1/2 will result in the Sierpinski triangle, while creating the proper arrangement with four points and a factor 1/2 will create a display of a "Sierpinski Tetrahedron", the three-dimensional analogue of the Sierpinski triangle. As the number of points is increased to a number N, the arrangement forms a corresponding (N-1)-dimensional Sierpinski Simplex.
In mathematics, a de Rham curve is a continuous fractal curve obtained as the image of the Cantor space, or, equivalently, from the base-two expansion of the real numbers in the unit interval. Many well-known fractal curves, including the Cantor function, Cesàro–Faber curve, Minkowski's question mark function, blancmange curve, and the Koch curve are all examples of de Rham curves. The general form of the curve was first described by Georges de Rham in 1957.
In mathematics the Vicsek fractal, also known as Vicsek snowflake or box fractal, is a fractal arising from a construction similar to that of the Sierpiński carpet, proposed by Tamás Vicsek. It has applications including as compact antennas, particularly in cellular phones.
An n-flake, polyflake, or Sierpinski n-gon, is a fractal constructed starting from an n-gon. This n-gon is replaced by a flake of smaller n-gons, such that the scaled polygons are placed at the vertices, and sometimes in the center. This process is repeated recursively to result in the fractal. Typically, there is also the restriction that the n-gons must touch yet not overlap.
The Mosely snowflake is a Sierpiński–Menger type of fractal obtained in two variants either by the operation opposite to creating the Sierpiński-Menger snowflake or Cantor dust i.e. not by leaving but by removing eight of the smaller 1/3-scaled corner cubes and the central one from each cube left from the previous recursion (lighter) or by removing only corner cubes (heavier).
The Fibonacci word fractal is a fractal curve defined on the plane from the Fibonacci word.
In fractal geometry, the open set condition (OSC) is a commonly imposed condition on self-similar fractals. In some sense, the condition imposes restrictions on the overlap in a fractal construction. Specifically, given an iterated function system of contractive mappings , the open set condition requires that there exists a nonempty, open set V satisfying two conditions:
In mathematical analysis and metric geometry, Laakso spaces are a class of metric spaces which are fractal, in the sense that they have non-integer Hausdorff dimension, but that admit a notion of differential calculus. They are constructed as quotient spaces of [0, 1] × K where K is a Cantor set.
{{cite web}}
: CS1 maint: multiple names: authors list (link)