Peano curve

Last updated
Three iterations of a Peano curve construction, whose limit is a space-filling curve. Peanocurve.svg
Three iterations of a Peano curve construction, whose limit is a space-filling curve.
Peano 1.GIF
Peano 2.GIF
Two iterations of a Peano curve

In geometry, the Peano curve is the first example of a space-filling curve to be discovered, by Giuseppe Peano in 1890. [1] Peano's curve is a surjective, continuous function from the unit interval onto the unit square, however it is not injective. Peano was motivated by an earlier result of Georg Cantor that these two sets have the same cardinality. Because of this example, some authors use the phrase "Peano curve" to refer more generally to any space-filling curve. [2]

Contents

Construction

Peano's curve may be constructed by a sequence of steps, where the ith step constructs a set Si of squares, and a sequence Pi of the centers of the squares, from the set and sequence constructed in the previous step. As a base case, S0 consists of the single unit square, and P0 is the one-element sequence consisting of its center point.

In step i, each square s of Si  1 is partitioned into nine smaller equal squares, and its center point c is replaced by a contiguous subsequence of the centers of these nine smaller squares. This subsequence is formed by grouping the nine smaller squares into three columns, ordering the centers contiguously within each column, and then ordering the columns from one side of the square to the other, in such a way that the distance between each consecutive pair of points in the subsequence equals the side length of the small squares. There are four such orderings possible:

Among these four orderings, the one for s is chosen in such a way that the distance between the first point of the ordering and its predecessor in Pi also equals the side length of the small squares. If c was the first point in its ordering, then the first of these four orderings is chosen for the nine centers that replace c. [3]

The Peano curve itself is the limit of the curves through the sequences of square centers, as i goes to infinity.

L-system construction

The Peano curve shown in the introduction can be constructed using a Lindenmayer system. This L-system can be described as follows:

Variables:X Y F
Constants:+
Start:X
Rules:(X → XFYFX+F+YFXFYFXFYFX), (Y → YFXFYFXFYFX+F+YFXFY)

where "F" means "draw forward", "+" means "turn clockwise 90°", and "" means "turn anticlockwise 90°". The image in the introduction shows the images of the first three iterations of the rules.

The curve shown in the 'construction' section be constructed as follows:

Variables:F
Constants:+
Start:F
Rules:(F → F+FFFFFFFF)

where "F" means "draw forward", "+" means "turn clockwise 90°", and "" means "turn anticlockwise 90°". The image above shows the first two iterations of the rule.

Variants

Peano curve with the middle line erased creates a Sierpinski carpet Peano Sierpinski carpet 4.svg
Peano curve with the middle line erased creates a Sierpinski carpet

In the definition of the Peano curve, it is possible to perform some or all of the steps by making the centers of each row of three squares be contiguous, rather than the centers of each column of squares. These choices lead to many different variants of the Peano curve. [3]

A "multiple radix" variant of this curve with different numbers of subdivisions in different directions can be used to fill rectangles of arbitrary shapes. [4]

The Hilbert curve is a simpler variant of the same idea, based on subdividing squares into four equal smaller squares instead of into nine equal smaller squares.

Related Research Articles

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube is a three-dimensional solid object bounded by six square faces. It has twelve edges and eight vertices. It can be represented as a rectangular cuboid with six square faces, or a parallelepiped with equal edges. It is an example of many type of solids: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.

<span class="mw-page-title-main">Column</span> Structural element that transmits weight from above to below

A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member. The term column applies especially to a large round support with a capital and a base or pedestal, which is made of stone, or appearing to be so. A small wooden or metal support is typically called a post. Supports with a rectangular or other non-round section are usually called piers.

<span class="mw-page-title-main">Koch snowflake</span> Fractal curve

The Koch snowflake is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch.

<span class="mw-page-title-main">Magic square</span> Equal row, column and diagonal totals

In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same. The "order" of the magic square is the number of integers along one side (n), and the constant sum is called the "magic constant". If the array includes just the positive integers , the magic square is said to be "normal". Some authors take "magic square" to mean "normal magic square".

<span class="mw-page-title-main">Stairs</span> Construction designed to bridge a large vertical distance by dividing it into steps

Stairs are a structure designed to bridge a large vertical distance between lower and higher levels by dividing it into smaller vertical distances. This is achieved as a diagonal series of horizontal platforms called steps which enable passage to the other level by stepping from one to another step in turn. Steps are very typically rectangular. Stairs may be straight, round, or may consist of two or more straight pieces connected at angles.

In mathematical analysis, a space-filling curve is a curve whose range reaches every point in a higher dimensional region, typically the unit square. Because Giuseppe Peano (1858–1932) was the first to discover one, space-filling curves in the 2-dimensional plane are sometimes called Peano curves, but that phrase also refers to the Peano curve, the specific example of a space-filling curve found by Peano.

<span class="mw-page-title-main">Sierpiński curve</span>

Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit completely fill the unit square: thus their limit curve, also called the Sierpiński curve, is an example of a space-filling curve.

<span class="mw-page-title-main">16-cell</span> Four-dimensional analog of the octahedron

In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid [sic?].

<span class="mw-page-title-main">Square-1 (puzzle)</span> Shape-shifting puzzle similar to Rubiks Cube

The Square-1 is a variant of the Rubik's Cube. Its distinguishing feature among the numerous Rubik's Cube variants is that it can change shape as it is twisted, due to the way it is cut, thus adding an extra level of challenge and difficulty. The Super Square One and Square Two puzzles have also been introduced. The Super Square One has two additional layers that can be scrambled and solved independently of the rest of the puzzle, and the Square Two has extra cuts made to the top and bottom layer, making the edge and corner wedges the same size.

<span class="mw-page-title-main">Z-order curve</span> Mapping function that preserves data point locality

In mathematical analysis and computer science, functions which are Z-order, Lebesgue curve, Morton space-filling curve, Morton order or Morton code map multidimensional data to one dimension while preserving locality of the data points. It is named in France after Henri Lebesgue, who studied it in 1904, and named in the United States after Guy Macdonald Morton, who first applied the order to file sequencing in 1966. The z-value of a point in multidimensions is simply calculated by interleaving the binary representations of its coordinate values. Once the data are sorted into this ordering, any one-dimensional data structure can be used, such as simple one dimensional arrays, binary search trees, B-trees, skip lists or hash tables. The resulting ordering can equivalently be described as the order one would get from a depth-first traversal of a quadtree or octree.

<span class="mw-page-title-main">Erdős–Szekeres theorem</span> Sufficiently long sequences of numbers have long monotonic subsequences

In mathematics, the Erdős–Szekeres theorem asserts that, given r, s, any sequence of distinct real numbers with length at least (r − 1)(s − 1) + 1 contains a monotonically increasing subsequence of length ror a monotonically decreasing subsequence of length s. The proof appeared in the same 1935 paper that mentions the Happy Ending problem.

<span class="mw-page-title-main">Hilbert curve</span> Space-filling curve

The Hilbert curve is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.

In computer science, the longest increasing subsequence problem aims to find a subsequence of a given sequence in which the subsequence's elements are sorted in an ascending order and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous or unique. The longest increasing subsequences are studied in the context of various disciplines related to mathematics, including algorithmics, random matrix theory, representation theory, and physics. The longest increasing subsequence problem is solvable in time where denotes the length of the input sequence.

In mathematical logic, a non-standard model of arithmetic is a model of first-order Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934).

<span class="mw-page-title-main">Three-level diamond interchange</span> Type of highway interchange

A three-level diamond interchange is a type of highway interchange where through traffic on both main roads is grade-separated from intersections which handle transferring traffic. It is similar in design to a three-level stacked roundabout except for its use of conventional intersections, and can be thought of as two diamond interchanges fused together.

<span class="mw-page-title-main">Cartesian tree</span> Binary tree derived from a sequence of numbers

In computer science, a Cartesian tree is a binary tree derived from a sequence of distinct numbers. To construct the Cartesian tree, set its root to be the minimum number in the sequence, and recursively construct its left and right subtrees from the subsequences before and after this number. It is uniquely defined as a min-heap whose symmetric (in-order) traversal returns the original sequence.

<span class="mw-page-title-main">Moore curve</span> Space filling fractal curve

A Moore curve is a continuous fractal space-filling curve which is a variant of the Hilbert curve. Precisely, it is the loop version of the Hilbert curve, and it may be thought as the union of four copies of the Hilbert curves combined in such a way to make the endpoints coincide.

<span class="mw-page-title-main">Siamese method</span>

The Siamese method, or De la Loubère method, is a simple method to construct any size of n-odd magic squares. The method was brought to France in 1688 by the French mathematician and diplomat Simon de la Loubère, as he was returning from his 1687 embassy to the kingdom of Siam. The Siamese method makes the creation of magic squares straightforward.

Space-filling trees are geometric constructions that are analogous to space-filling curves, but have a branching, tree-like structure and are rooted. A space-filling tree is defined by an incremental process that results in a tree for which every point in the space has a finite-length path that converges to it. In contrast to space-filling curves, individual paths in the tree are short, allowing any part of the space to be quickly reached from the root. The simplest examples of space-filling trees have a regular, self-similar, fractal structure, but can be generalized to non-regular and even randomized/Monte-Carlo variants. Space-filling trees have interesting parallels in nature, including fluid distribution systems, vascular networks, and fractal plant growth, and many interesting connections to L-systems in computer science.

In computer science, splaysort is an adaptive comparison sorting algorithm based on the splay tree data structure.

References

  1. Peano, G. (1890), "Sur une courbe, qui remplit toute une aire plane", Mathematische Annalen , 36 (1): 157–160, doi:10.1007/BF01199438 .
  2. Gugenheimer, Heinrich Walter (1963), Differential Geometry, Courier Dover Publications, p. 3, ISBN   9780486157207 .
  3. 1 2 Bader, Michael (2013), "2.4 Peano curve", Space-Filling Curves, Texts in Computational Science and Engineering, vol. 9, Springer, pp. 25–27, doi:10.1007/978-3-642-31046-1_2, ISBN   9783642310461 .
  4. Cole, A. J. (September 1991), "Halftoning without dither or edge enhancement", The Visual Computer, 7 (5): 235–238, doi:10.1007/BF01905689