The Beauty of Fractals

Last updated
The Beauty of Fractals
BeautyOfFractalsBook.jpg
Cover
Author Heinz-Otto Peitgen, Peter Richter
Subject Fractals
PublisherSpringer-Verlag, Heidelberg
Publication date
1986
ISBN 0-387-15851-0
OCLC 13331323
516 19
LC Class QA447 .P45 1986
Followed by The Science of Fractal Images  

The Beauty of Fractals is a 1986 book by Heinz-Otto Peitgen and Peter Richter which publicises the fields of complex dynamics, chaos theory and the concept of fractals. It is lavishly illustrated and as a mathematics book became an unusual success.

Contents

The book includes a total of 184 illustrations, including 88 full-colour pictures of Julia sets. Although the format suggests a coffee table book, the discussion of the background of the presented images addresses some sophisticated mathematics which would not be found in popular science books. In 1987 the book won an Award for distinguished technical communication.

Summary

The books starts with a general introduction to Complex Dynamics, Chaos and fractals. In particular the Feigenbaum scenario and the relation to Julia sets and the Mandelbrot set is discussed. The following special sections provide in depth detail for the shown images: Verhulst Dynamics, Julia Sets and Their Computergraphical Generation, Sullivan's Classification of Critical Points, The Mandelbrot Set, External Angles and Hubbard Trees, Newton's Method for Complex Polynomials: Cayley's Problem, Newtons's Method for Real Equations, A Discrete Volterra-Lotka System, Yang-Lee Zeros, Renormalization (Magnetism and Complex Boundaries).

The book also includes invited Contributions by Benoît Mandelbrot, Adrien Douady, Gert Eilenberger and Herbert W. Franke, which provide additional formality and some historically interesting detail. Benoit Mandelbrot gives a very personal account of his discovery of fractals in general and the fractal named after him in particular. Adrien Douady explains the solved and unsolved problems relating to the almost amusingly complex Mandelbrot set.

The images

Part of the text was originally conceived as a supplemented catalogue to the exhibition Frontiers of Chaos of the German Goethe-Institut, first seen in Europe and the United States. It described the context and meaning of these images. The images were created at the "Computer Graphics Laboratory Dynamical Systems" at the University of Bremen in 1984 and 1985. Dedicated software had to be developed to make the necessary computations which at that time took hours of computer time to create a single image. For the exhibit and the book the computed images had to be captured as photographs. Digital image capturing and archiving were not feasible at that time.

The book was cited and its images were reproduced in a number of publications. [1] [2] [3] Some images were even used before the book was published. The cover article of the Scientific American August 1985 edition showed some of the images and provided reference to the book to be published. [4]

One particular image sequence of the book is the close up series "seahorse valley". While the first publication of such a close up series was the June 1984 cover article of the Magazine Geo, [5] The Beauty of Fractals provided the first such publication within a book.

Translations

Related Research Articles

Benoit Mandelbrot French-American mathematician

Benoit B.Mandelbrot was a Polish-born French-American mathematician and polymath with broad interests in the practical sciences, especially regarding what he labeled as "the art of roughness" of physical phenomena and "the uncontrolled element in life". He referred to himself as a "fractalist" and is recognized for his contribution to the field of fractal geometry, which included coining the word "fractal", as well as developing a theory of "roughness and self-similarity" in nature.

Chaos theory Field of mathematics

Chaos theory is an interdisciplinary scientific theory and branch of mathematics focused on underlying patterns and deterministic laws highly sensitive to initial conditions in dynamical systems that were thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnectedness, constant feedback loops, repetition, self-similarity, fractals, and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state. A metaphor for this behavior is that a butterfly flapping its wings in Brazil can cause a tornado in Texas.

Fractal Self similar mathematical structures

In mathematics, fractal is a term used to describe geometric shapes containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory.

Mandelbrot set Fractal named after mathematician Benoit Mandelbrot

The Mandelbrot set is the set of complex numbers for which the function does not diverge to infinity when iterated from , i.e., for which the sequence , , etc., remains bounded in absolute value.

Self-similarity Whole of an object being mathematically similar to part of itself

In mathematics, a self-similar object is exactly or approximately similar to a part of itself. Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The non-trivial similarity evident in fractals is distinguished by their fine structure, or detail on arbitrarily small scales. As a counterexample, whereas any portion of a straight line may resemble the whole, further detail is not revealed.

Fractal art

Fractal art is a form of algorithmic art created by calculating fractal objects and representing the calculation results as still digital images, animations, and media. Fractal art developed from the mid-1980s onwards. It is a genre of computer art and digital art which are part of new media art. The mathematical beauty of fractals lies at the intersection of generative art and computer art. They combine to produce a type of abstract art.

Julia set Fractal sets in complex dynamics of mathematics

In the context of complex dynamics, a branch of mathematics, the Julia set and the Fatou set are two complementary sets defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values behave similarly under repeated iteration of the function, and the Julia set consists of values such that an arbitrarily small perturbation can cause drastic changes in the sequence of iterated function values. Thus the behavior of the function on the Fatou set is "regular", while on the Julia set its behavior is "chaotic".

Heinz-Otto Peitgen German mathematician

Heinz-Otto Peitgen is a German mathematician and was President of Jacobs University from January 1, 2013 to December 31, 2013. Peitgen contributed to the study of fractals, chaos theory, and medical image computing, as well as helping to introduce fractals to the broader public.

Adrien Douady French mathematician

Adrien Douady was a French mathematician.

Burning Ship fractal Complex plane fractal

The Burning Ship fractal, first described and created by Michael Michelitsch and Otto E. Rössler in 1992, is generated by iterating the function:

An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set. Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.

Coastline paradox Counterintuitive observation that the coastline of a landmass does not have a well-defined length

The coastline paradox is the counterintuitive observation that the coastline of a landmass does not have a well-defined length. This results from the fractal curve-like properties of coastlines, i.e., the fact that a coastline typically has a fractal dimension. The first recorded observation of this phenomenon was by Lewis Fry Richardson and it was expanded upon by Benoit Mandelbrot.

John H. Hubbard American mathematician

John Hamal Hubbard is an American mathematician and professor at Cornell University and the Université de Provence. He is well known for the mathematical contributions he made with Adrien Douady in the field of complex dynamics, including a study of the Mandelbrot set. One of their most important results is that the Mandelbrot set is connected.

Misiurewicz point

In mathematics, a Misiurewicz point is a parameter value in the Mandelbrot set and also in real quadratic maps of the interval for which the critical point is strictly preperiodic. By analogy, the term Misiurewicz point is also used for parameters in a multibrot set where the unique critical point is strictly preperiodic.. These points are named after mathematician Michał Misiurewicz who first studied them.

The filled-in Julia set of a polynomial is :

Douady rabbit

The Douady rabbit is any of various particular filled Julia sets associated with the parameter near the center period 3 buds of Mandelbrot set for complex quadratic map.

Fractal-generating software

Fractal-generating software is any type of graphics software that generates images of fractals. There are many fractal generating programs available, both free and commercial. Mobile apps are available to play or tinker with fractals. Some programmers create fractal software for themselves because of the novelty and because of the challenge in understanding the related mathematics. The generation of fractals has led to some very large problems for pure mathematics.

Robert L. Devaney American mathematician

Robert Luke Devaney is an American mathematician, the Feld Family Professor of Teaching Excellence at Boston University. His research involves dynamical systems and fractals.

Nessim Sibony

Nessim Sibony is a French mathematician, specializing in the theory of several complex variables and complex dynamics in higher dimension. Since 1981, he has been a professor at the University of Paris-Sud in Orsay.

References

  1. Gleick, James (1987). Chaos: Making a New Science. London: Cardinal. p. 229.
  2. Fractals: The Patterns of Chaos. John Briggs. 1992. p. 80.
  3. Stewart, Ian (1989). Does God Play Dice?. Penguin Books. p. 236. ISBN   0-14-012501-9. The best way to grasp the intricate and curious geometry of the [Mandelbrot set]'s structure is to beg, borrow, steal or (I recommend) buy The Beauty of Fractals
  4. Dewdney, A.K. (Aug 1985). A computer microscope zooms in for a close look at the most complicated object in mathematics. Scientific American. pp. 16–24.
  5. Peitgen, Heinz-Otto; Richter, Peter (June 1984). Mathematik: Die unendliche Reise. Hamburg: Geo Verlag Gruner + Jahr AG. pp. 100–124.