Koch snowflake

Last updated
The first four iterations of the Koch snowflake KochFlake.svg
The first four iterations of the Koch snowflake
The first seven iterations in animation Von Koch curve.gif
The first seven iterations in animation
Zooming into a vertex of the Koch curve Kochsim.gif
Zooming into a vertex of the Koch curve
Zooming into a point that is not a vertex may cause the curve to rotate Zooming in a point of Koch curve that is not a vertex.gif
Zooming into a point that is not a vertex may cause the curve to rotate
Koch antisnowflake
Koch antisnowflake 1 through 4.svg
First four iterations
KochAntiSnowflake.svg
Sixth iteration

The Koch snowflake (also known as the Koch curve, Koch star, or Koch island [1] [2] ) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" [3] by the Swedish mathematician Helge von Koch.

Contents

The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle, and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller equilateral triangles. The areas enclosed by the successive stages in the construction of the snowflake converge to times the area of the original triangle, while the perimeters of the successive stages increase without bound. Consequently, the snowflake encloses a finite area, but has an infinite perimeter.

The Koch snowflake has been constructed as an example of a continuous curve where drawing a tangent line to any point is impossible. Unlike the earlier Weierstrass function where the proof was purely analytical, the Koch snowflake was created to be possible to geometrically represent at the time, so that this property could also be seen through "naive intuition". [3]

Construction

The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

  1. divide the line segment into three segments of equal length.
  2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
  3. remove the line segment that is the base of the triangle from step 2.

The first iteration of this process produces the outline of a hexagram.

The Koch snowflake is the limit approached as the above steps are followed indefinitely. The Koch curve originally described by Helge von Koch is constructed using only one of the three sides of the original triangle. In other words, three Koch curves make a Koch snowflake.

A Koch curve–based representation of a nominally flat surface can similarly be created by repeatedly segmenting each line in a sawtooth pattern of segments with a given angle. [4]

A fractal rough surface built from multiple Koch curve iterations Koch rough surface.png
A fractal rough surface built from multiple Koch curve iterations

Properties

Perimeter of the Koch snowflake

Each iteration multiplies the number of sides in the Koch snowflake by four, so the number of sides after iterations is given by:

If the original equilateral triangle has sides of length , the length of each side of the snowflake after iterations is:

an inverse power of three multiple of the original length. The perimeter of the snowflake after iterations is:

The Koch curve has an infinite length, because the total length of the curve increases by a factor of with each iteration. Each iteration creates four times as many line segments as in the previous iteration, with the length of each one being the length of the segments in the previous stage. Hence, the length of the curve after iterations will be times the original triangle perimeter and is unbounded, as tends to infinity.

Limit of perimeter

As the number of iterations tends to infinity, the limit of the perimeter is:

since .

An -dimensional measure exists, but has not been calculated so far. Only upper and lower bounds have been invented.[ clarification needed ] [5]

Area of the Koch snowflake

In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration is:

The area of each new triangle added in an iteration is of the area of each triangle added in the previous iteration, so the area of each triangle added in iteration is:

where is the area of the original triangle. The total new area added in iteration is therefore:

The total area of the snowflake after iterations is:

Collapsing the geometric sum gives:

Limits of area

The limit of the area is:

since .

Thus, the area of the Koch snowflake is of the area of the original triangle. Expressed in terms of the side length of the original triangle, this is: [6]

Solid of revolution

The volume of the solid of revolution of the Koch snowflake about an axis of symmetry of the initiating equilateral triangle of unit side is [7]

Other properties

The Koch snowflake is self-replicating with six smaller copies surrounding one larger copy at the center. Hence, it is an irrep-7 irrep-tile (see Rep-tile for discussion).

The fractal dimension of the Koch curve is . This is greater than that of a line () but less than that of Peano's space-filling curve ().

It is impossible to draw a tangent line to any point of the curve.

Representation as a de Rham curve

The Koch curve arises as a special case of a de Rham curve. The de Rham curves are mappings of Cantor space into the plane, usually arranged so as to form a continuous curve. Every point on a continuous de Rham curve corresponds to a real number in the unit interval. For the Koch curve, the tips of the snowflake correspond to the dyadic rationals: each tip can be uniquely labeled with a distinct dyadic rational.

Tessellation of the plane

Tessellation by two sizes of Koch snowflake Koch similarity tiling.svg
Tessellation by two sizes of Koch snowflake

It is possible to tessellate the plane by copies of Koch snowflakes in two different sizes. However, such a tessellation is not possible using only snowflakes of one size. Since each Koch snowflake in the tessellation can be subdivided into seven smaller snowflakes of two different sizes, it is also possible to find tessellations that use more than two sizes at once. [8] Koch snowflakes and Koch antisnowflakes of the same size may be used to tile the plane.

Thue–Morse sequence and turtle graphics

A turtle graphic is the curve that is generated if an automaton is programmed with a sequence. If the Thue–Morse sequence members are used in order to select program states:

the resulting curve converges to the Koch snowflake.

Representation as Lindenmayer system

The Koch curve can be expressed by the following rewrite system (Lindenmayer system):

Alphabet : F
Constants : +, −
Axiom : F
Production rules:
F → F+F--F+F

Here, F means "draw forward", - means "turn right 60°", and + means "turn left 60°".

To create the Koch snowflake, one would use F--F--F (an equilateral triangle) as the axiom.

Variants of the Koch curve

Following von Koch's concept, several variants of the Koch curve were designed, considering right angles (quadratic), other angles (Cesàro), circles and polyhedra and their extensions to higher dimensions (Sphereflake and Kochcube, respectively)

Variant (dimension, angle)IllustrationConstruction
≤1D, 60-90° angle Koch Curve 85degrees.png
Cesàro fractal (85°)
The Cesàro fractal is a variant of the Koch curve with an angle between 60° and 90°.[ citation needed ]
Cesaro fractal outlines 1-4.svg
First four iterations of a Cesàro antisnowflake (four 60° curves arranged in a 90° square)
≈1.46D, 90° angle Quadratic Koch 2.svg
Quadratic type 1 curve
Quadratic Koch curve type1 iterations.png
First two iterations
1.5D, 90° angle Quadratic Koch.svg
Quadratic type 2 curve
Minkowski Sausage [9]
Quadratic Koch curve type2 iterations.png
First two iterations. Its fractal dimension equals and is exactly half-way between dimension 1 and 2. It is therefore often chosen when studying the physical properties of non-integer fractal objects.
≤2D, 90° angle Minkowski island 3.svg
Third iteration
Minkowski Island
Minkowski island 1-3.svg
Four quadratic type 2 curves arranged in a square
≈1.37D, 90° angle Karperienflake.gif
Quadratic flake
Karperienflakeani2.gif
4 quadratic type 1 curves arranged in a polygon: First two iterations. Known as the "Minkowski Sausage", [10] [11] [12] its fractal dimension equals . [13]
≤2D, 90° angle Anticross-stitch curve 0-4.svg
Quadratic antiflake
Anticross-stitch curve, the quadratic flake type 1, with the curves facing inwards instead of outwards (Vicsek fractal)
≈1.49D, 90° angle Quadriccross.gif
Quadratic Cross
Another variation. Its fractal dimension equals .
≤2D, 90° angle Koch quadratic island L7 3.svg
Quadratic island [14]
Koch quadratic L7 curves 0-2.svg
Quadratic curve, iterations 0, 1, and 2; dimension of
≤2D, 60° angle Koch surface 3.png
von Koch surface
Koch surface 0 through 3.png
First three iterations of a natural extension of the Koch curve in two dimensions.
≤2D, 90° angle Koch quadratic 3d fractal.svg
First (blue block), second (plus green blocks), third (plus yellow blocks) and fourth (plus transparent blocks) iterations of the type 1 3D Koch quadratic fractal
Extension of the quadratic type 1 curve. The illustration at left shows the fractal after the second iteration
KochCube Animation Gray.gif
Animation quadratic surface
≤3D, any Koch Curve in Three Dimensions ("Delta" fractal).jpg
Koch curve in 3D
A three-dimensional fractal constructed from Koch curves. The shape can be considered a three-dimensional extension of the curve in the same sense that the Sierpiński pyramid and Menger sponge can be considered extensions of the Sierpinski triangle and Sierpinski carpet. The version of the curve used for this shape uses 85° angles.

Squares can be used to generate similar fractal curves. Starting with a unit square and adding to each side at each iteration a square with dimension one third of the squares in the previous iteration, it can be shown that both the length of the perimeter and the total area are determined by geometric progressions. The progression for the area converges to while the progression for the perimeter diverges to infinity, so as in the case of the Koch snowflake, we have a finite area bounded by an infinite fractal curve. [15] The resulting area fills a square with the same center as the original, but twice the area, and rotated by radians, the perimeter touching but never overlapping itself.

The total area covered at the th iteration is:

while the total length of the perimeter is:

which approaches infinity as increases.

Functionalisation

Graph of the Koch's function Koch function graph.svg
Graph of the Koch's function

In addition to the curve, the paper by Helge von Koch that has established the Koch curve shows a variation of the curve as an example of a continuous everywhere yet nowhere differentiable function that was possible to represent geometrically at the time. From the base straight line, represented as AB, the graph can be drawn by recursively applying the following on each line segment:

Each point of AB can be shown to converge to a single height. If is defined as the distance of that point to the initial base, then as a function is continuous everywhere and differentiable nowhere. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.

<span class="mw-page-title-main">Hausdorff dimension</span> Invariant measure of fractal dimension

In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computation of dimensions for highly irregular or "rough" sets, this dimension is also commonly referred to as the Hausdorff–Besicovitch dimension.

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Sierpiński triangle</span> Fractal composed of triangles

The Sierpiński triangle, also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction. It is named after the Polish mathematician Wacław Sierpiński, but appeared as a decorative pattern many centuries before the work of Sierpiński.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Menger sponge</span> Three-dimensional fractal

In mathematics, the Menger sponge is a fractal curve. It is a three-dimensional generalization of the one-dimensional Cantor set and two-dimensional Sierpinski carpet. It was first described by Karl Menger in 1926, in his studies of the concept of topological dimension.

In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the scale at which it is measured. It is also a measure of the space-filling capacity of a pattern, and it tells how a fractal scales differently, in a fractal (non-integer) dimension.

<span class="mw-page-title-main">Sierpiński curve</span>

Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit completely fill the unit square: thus their limit curve, also called the Sierpiński curve, is an example of a space-filling curve.

In mathematics, the T-square is a two-dimensional fractal. It has a boundary of infinite length bounding a finite area. Its name comes from the drawing instrument known as a T-square.

<span class="mw-page-title-main">Fermat point</span> Triangle center minimizing sum of distances to each vertex

In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.

In mathematics, a de Rham curve is a continuous fractal curve obtained as the image of the Cantor space, or, equivalently, from the base-two expansion of the real numbers in the unit interval. Many well-known fractal curves, including the Cantor function, Cesàro–Faber curve, Minkowski's question mark function, blancmange curve, and the Koch curve are all examples of de Rham curves. The general form of the curve was first described by Georges de Rham in 1957.

The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.

<span class="mw-page-title-main">Vicsek fractal</span>

In mathematics the Vicsek fractal, also known as Vicsek snowflake or box fractal, is a fractal arising from a construction similar to that of the Sierpinski carpet, proposed by Tamás Vicsek. It has applications including as compact antennas, particularly in cellular phones.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

An n-flake, polyflake, or Sierpinski n-gon, is a fractal constructed starting from an n-gon. This n-gon is replaced by a flake of smaller n-gons, such that the scaled polygons are placed at the vertices, and sometimes in the center. This process is repeated recursively to result in the fractal. Typically, there is also the restriction that the n-gons must touch yet not overlap.

The Fibonacci word fractal is a fractal curve defined on the plane from the Fibonacci word.

In geometry, the mean line segment length is the average length of a line segment connecting two points chosen uniformly at random in a given shape. In other words, it is the expected Euclidean distance between two random points, where each point in the shape is equally likely to be chosen.

References

  1. Addison, Paul S. (1997). Fractals and Chaos: An Illustrated Course. Institute of Physics. p. 19. ISBN   0-7503-0400-6.
  2. Lauwerier, Hans (1991). Fractals: Endlessly Repeated Geometrical Figures. Translated by Gill-Hoffstädt, Sophia. Princeton University Press. p. 36. ISBN   0-691-02445-6. Mandelbrot called this a Koch island.
  3. 1 2 3 von Koch, Helge (1904). "Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire". Arkiv för matematik, astronomi och fysik (in French). 1: 681–704. JFM   35.0387.02.
  4. Alonso-Marroquin, F.; Huang, P.; Hanaor, D.; Flores-Johnson, E.; Proust, G.; Gan, Y.; Shen, L. (2015). "Static friction between rigid fractal surfaces" (PDF). Physical Review E. 92 (3): 032405. Bibcode:2015PhRvE..92c2405A. doi:10.1103/PhysRevE.92.032405. hdl: 2123/13835 . PMID   26465480. — Study of fractal surfaces using Koch curves.
  5. Zhu, Zhi Wei; Zhou, Zuo Ling; Jia, Bao Guo (October 2003). "On the Lower Bound of the Hausdorff Measure of the Koch Curve". Acta Mathematica Sinica. 19 (4): 715–728. doi:10.1007/s10114-003-0310-2. S2CID   122517792.
  6. "Koch Snowflake". ecademy.agnesscott.edu.
  7. McCartney, Mark (2020-04-16). "The area, centroid and volume of revolution of the Koch curve". International Journal of Mathematical Education in Science and Technology. 52 (5): 782–786. doi:10.1080/0020739X.2020.1747649. ISSN   0020-739X. S2CID   218810213.
  8. Burns, Aidan (1994). "Fractal tilings". Mathematical Gazette. 78 (482): 193–6. doi:10.2307/3618577. JSTOR   3618577. S2CID   126185324..
  9. Paul S. Addison, Fractals and Chaos: An illustrated course, p. 19, CRC Press, 1997 ISBN   0849384435.
  10. Weisstein, Eric W. (1999). "Minkowski Sausage", archive.lib.msu.edu. Accessed: 21 September 2019.
  11. Pamfilos, Paris. "Minkowski Sausage", user.math.uoc.gr/~pamfilos/. Accessed: 21 September 2019.
  12. Weisstein, Eric W. "Minkowski Sausage". MathWorld . Retrieved 22 September 2019.
  13. Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, p.48. New York: W. H. Freeman. ISBN   9780716711865. Cited in Weisstein, Eric W. "Minkowski Sausage". MathWorld . Retrieved 22 September 2019..
  14. Appignanesi, Richard; ed. (2006). Introducing Fractal Geometry. Icon. ISBN   978-1840467-13-0.
  15. Demonstrated by James McDonald in a public lecture at KAUST University on January 27, 2013. "KAUST | Academics | Winter Enrichment Program". Archived from the original on 2013-01-12. Retrieved 2013-01-29. retrieved 29 January 2013.

Further reading

External videos
Nuvola apps kaboodle.svg Koch Snowflake Fractal
Khan Academy