Linearity

Last updated

In mathematics, the term linear is used in two distinct senses for two different properties:

Contents

An example of a linear function is the function defined by that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables and is

Linearity of a mapping is closely related to proportionality . Examples in physics include the linear relationship of voltage and current in an electrical conductor (Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships, such as between velocity and kinetic energy, are nonlinear .

Generalized for functions in more than one dimension, linearity means the property of a function of being compatible with addition and scaling, also known as the superposition principle.

Linearity of a polynomial means that its degree is less than two. The use of the term for polynomials stems from the fact that the graph of a polynomial in one variable is a straight line. In the term "linear equation", the word refers to the linearity of the polynomials involved.

Because a function such as is defined by a linear polynomial in its argument, it is sometimes also referred to as being a "linear function", and the relationship between the argument and the function value may be referred to as a "linear relationship". This is potentially confusing, but usually the intended meaning will be clear from the context.

The word linear comes from Latin linearis, "pertaining to or resembling a line".

In mathematics

Linear maps

In mathematics, a linear map or linear function f(x) is a function that satisfies the two properties: [1]

These properties are known as the superposition principle. In this definition, x is not necessarily a real number, but can in general be an element of any vector space. A more special definition of linear function, not coinciding with the definition of linear map, is used in elementary mathematics (see below).

Additivity alone implies homogeneity for rational α, since implies for any natural number n by mathematical induction, and then implies . The density of the rational numbers in the reals implies that any additive continuous function is homogeneous for any real number α, and is therefore linear.

The concept of linearity can be extended to linear operators. Important examples of linear operators include the derivative considered as a differential operator, and other operators constructed from it, such as del and the Laplacian. When a differential equation can be expressed in linear form, it can generally be solved by breaking the equation up into smaller pieces, solving each of those pieces, and summing the solutions.

Linear polynomials

In a different usage to the above definition, a polynomial of degree 1 is said to be linear, because the graph of a function of that form is a straight line. [2]

Over the reals, a simple example of a linear equation is given by:

where m is often called the slope or gradient, and b the y-intercept, which gives the point of intersection between the graph of the function and the y-axis.

Note that this usage of the term linear is not the same as in the section above, because linear polynomials over the real numbers do not in general satisfy either additivity or homogeneity. In fact, they do so if and only if the constant termb in the example – equals 0. If b ≠ 0, the function is called an affine function (see in greater generality affine transformation).

Linear algebra is the branch of mathematics concerned with systems of linear equations.

Boolean functions

Hasse diagram of a linear Boolean function Hasse-linear.svg
Hasse diagram of a linear Boolean function

In Boolean algebra, a linear function is a function for which there exist such that

, where

Note that if , the above function is considered affine in linear algebra (i.e. not linear).

A Boolean function is linear if one of the following holds for the function's truth table:

  1. In every row in which the truth value of the function is T, there are an odd number of Ts assigned to the arguments, and in every row in which the function is F there is an even number of Ts assigned to arguments. Specifically, f(F, F, ..., F) = F, and these functions correspond to linear maps over the Boolean vector space.
  2. In every row in which the value of the function is T, there is an even number of Ts assigned to the arguments of the function; and in every row in which the truth value of the function is F, there are an odd number of Ts assigned to arguments. In this case, f(F, F, ..., F) = T.

Another way to express this is that each variable always makes a difference in the truth value of the operation or it never makes a difference.

Negation, Logical biconditional, exclusive or, tautology, and contradiction are linear functions.

Physics

In physics, linearity is a property of the differential equations governing many systems; for instance, the Maxwell equations or the diffusion equation. [3]

Linearity of a homogenous differential equation means that if two functions f and g are solutions of the equation, then any linear combination af + bg is, too.

In instrumentation, linearity means that a given change in an input variable gives the same change in the output of the measurement apparatus: this is highly desirable in scientific work. In general, instruments are close to linear over a certain range, and most useful within that range. In contrast, human senses are highly nonlinear: for instance, the brain completely ignores incoming light unless it exceeds a certain absolute threshold number of photons.

Linear motion traces a straight line trajectory.

Electronics

In electronics, the linear operating region of a device, for example a transistor, is where an output dependent variable (such as the transistor collector current) is directly proportional to an input dependent variable (such as the base current). This ensures that an analog output is an accurate representation of an input, typically with higher amplitude (amplified). A typical example of linear equipment is a high fidelity audio amplifier, which must amplify a signal without changing its waveform. Others are linear filters, and linear amplifiers in general.

In most scientific and technological, as distinct from mathematical, applications, something may be described as linear if the characteristic is approximately but not exactly a straight line; and linearity may be valid only within a certain operating region—for example, a high-fidelity amplifier may distort a small signal, but sufficiently little to be acceptable (acceptable but imperfect linearity); and may distort very badly if the input exceeds a certain value. [4]

Integral linearity

For an electronic device (or other physical device) that converts a quantity to another quantity, Bertram S. Kolts writes: [5] [6]

There are three basic definitions for integral linearity in common use: independent linearity, zero-based linearity, and terminal, or end-point, linearity. In each case, linearity defines how well the device's actual performance across a specified operating range approximates a straight line. Linearity is usually measured in terms of a deviation, or non-linearity, from an ideal straight line and it is typically expressed in terms of percent of full scale, or in ppm (parts per million) of full scale. Typically, the straight line is obtained by performing a least-squares fit of the data. The three definitions vary in the manner in which the straight line is positioned relative to the actual device's performance. Also, all three of these definitions ignore any gain, or offset errors that may be present in the actual device's performance characteristics.

See also

Related Research Articles

<span class="mw-page-title-main">Asymptote</span> Limit of the tangent line at a point that tends to infinity

In analytic geometry, an asymptote of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity.

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector space and complex vector space are kinds of vector spaces based on different kinds of scalars: real coordinate space or complex coordinate space.

Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming.

<span class="mw-page-title-main">Differential calculus</span> Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

In mathematics, a coefficient is a multiplicative factor involved in some term of a polynomial, a series, or an expression. It may be a number (dimensionless), in which case it is known as a numerical factor. It may also be a constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any expression. When the combination of variables and constants is not necessarily involved in a product, it may be called a parameter.

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

In mathematics, the term linear function refers to two distinct but related notions:

<span class="mw-page-title-main">Normal (geometry)</span> Line or vector perpendicular to a curve or a surface

In geometry, a normal is an object that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

<span class="mw-page-title-main">Convex function</span> Real function with secant line between points above the graph itself

In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph is a convex set. In simple terms, a convex function graph is shaped like a cup , while a concave function's graph is shaped like a cap .

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

<span class="mw-page-title-main">Boolean function</span> Function returning one of only two values

In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set. Alternative names are switching function, used especially in older computer science literature, and truth function, used in logic. Boolean functions are the subject of Boolean algebra and switching theory.

<span class="mw-page-title-main">Hypergeometric function</span> Function defined by a hypergeometric series

In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution.

<span class="mw-page-title-main">Symmetry in mathematics</span>

Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.

In mathematics, a variable is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set.

<span class="mw-page-title-main">Linear function (calculus)</span> Polynomial function of degree at most one

In calculus and related areas of mathematics, a linear function from the real numbers to the real numbers is a function whose graph is a non-vertical line in the plane. The characteristic property of linear functions is that when the input variable is changed, the change in the output is proportional to the change in the input.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Edwards, Harold M. (1995). Linear Algebra. Springer. p. 78. ISBN   9780817637316.
  2. Stewart, James (2008). Calculus: Early Transcendentals, 6th ed., Brooks Cole Cengage Learning. ISBN   978-0-495-01166-8, Section 1.2
  3. Evans, Lawrence C. (2010) [1998], Partial differential equations (PDF), Graduate Studies in Mathematics, vol. 19 (2nd ed.), Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/019, ISBN   978-0-8218-4974-3, MR   2597943, archived (PDF) from the original on 2022-10-09
  4. Whitaker, Jerry C. (2002). The RF transmission systems handbook. CRC Press. ISBN   978-0-8493-0973-1.
  5. Kolts, Bertram S. (2005). "Understanding Linearity and Monotonicity" (PDF). analogZONE. Archived from the original (PDF) on February 4, 2012. Retrieved September 24, 2014.
  6. Kolts, Bertram S. (2005). "Understanding Linearity and Monotonicity". Foreign Electronic Measurement Technology. 24 (5): 30–31. Retrieved September 25, 2014.