Part of a series of articles about |
Calculus |
---|
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,
This formula is useful for evaluating various trigonometric integrals. In particular, it can be used to evaluate the integral of the secant cubed, which, though seemingly special, comes up rather frequently in applications. [1]
The definite integral of the secant function starting from is the inverse Gudermannian function, For numerical applications, all of the above expressions result in loss of significance for some arguments. An alternative expression in terms of the inverse hyperbolic sine arsinh is numerically well behaved for real arguments : [2]
The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection, used for marine navigation with constant compass bearing.
Three common expressions for the integral of the secant,
are equivalent because
Proof: we can separately apply the tangent half-angle substitution to each of the three forms, and show them equivalent to the same expression in terms of Under this substitution and
First,
Second,
Third, using the tangent addition identity
So all three expressions describe the same quantity.
The conventional solution for the Mercator projection ordinate may be written without the absolute value signs since the latitude lies between and ,
Let
Therefore,
The integral of the secant function was one of the "outstanding open problems of the mid-seventeenth century", solved in 1668 by James Gregory. [3] He applied his result to a problem concerning nautical tables. [1] In 1599, Edward Wright evaluated the integral by numerical methods – what today we would call Riemann sums. [4] He wanted the solution for the purposes of cartography – specifically for constructing an accurate Mercator projection. [3] In the 1640s, Henry Bond, a teacher of navigation, surveying, and other mathematical topics, compared Wright's numerically computed table of values of the integral of the secant with a table of logarithms of the tangent function, and consequently conjectured that [3]
This conjecture became widely known, and in 1665, Isaac Newton was aware of it. [5]
A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator by sec θ + tan θ and then using the substitution u = sec θ + tan θ. This substitution can be obtained from the derivatives of secant and tangent added together, which have secant as a common factor. [6]
Starting with
adding them gives
The derivative of the sum is thus equal to the sum multiplied by sec θ. This enables multiplying sec θ by sec θ + tan θ in the numerator and denominator and performing the following substitutions:
The integral is evaluated as follows:
as claimed. This was the formula discovered by James Gregory. [1]
Although Gregory proved the conjecture in 1668 in his Exercitationes Geometricae, [7] the proof was presented in a form that renders it nearly impossible for modern readers to comprehend; Isaac Barrow, in his Lectiones Geometricae of 1670, [8] gave the first "intelligible" proof, though even that was "couched in the geometric idiom of the day." [3] Barrow's proof of the result was the earliest use of partial fractions in integration. [3] Adapted to modern notation, Barrow's proof began as follows:
Substituting u = sin θ, du = cos θdθ, reduces the integral to
Therefore,
as expected. Taking the absolute value is not necessary because and are always non-negative for real values of
Under the tangent half-angle substitution [9]
Therefore the integral of the secant function is
as before.
The integral can also be derived by using a somewhat non-standard version of the tangent half-angle substitution, which is simpler in the case of this particular integral, published in 2013, [10] is as follows:
Substituting:
The integral can also be solved by manipulating the integrand and substituting twice. Using the definition sec θ = 1/cos θ and the identity cos2 θ + sin2 θ = 1, the integral can be rewritten as
Substituting u = sin θ, du = cos θdθ reduces the integral to
The reduced integral can be evaluated by substituting u = tanh t, du = sech2 tdt, and then using the identity 1 − tanh2 t = sech2 t.
The integral is now reduced to a simple integral, and back-substituting gives
which is one of the hyperbolic forms of the integral.
A similar strategy can be used to integrate the cosecant, hyperbolic secant, and hyperbolic cosecant functions.
It is also possible to find the other two hyperbolic forms directly, by again multiplying and dividing by a convenient term:
where stands for because Substituting u = tan θ, du = sec2 θdθ, reduces to a standard integral:
where sgn is the sign function.
Likewise:
Substituting u = |sec θ|, du = |sec θ| tan θdθ, reduces to a standard integral:
Under the substitution
So the integral can be solved as:
Because the constant of integration can be anything, the additional constant term can be absorbed into it. Finally, if theta is real-valued, we can indicate this with absolute value brackets in order to get the equation into its most familiar form:
The integral of the hyperbolic secant function defines the Gudermannian function:
The integral of the secant function defines the Lambertian function, which is the inverse of the Gudermannian function:
These functions are encountered in the theory of map projections: the Mercator projection of a point on the sphere with longitude λ and latitude ϕ may be written [11] as:
D. T. Whiteside, editor, The Mathematical Papers of Isaac Newton, Cambridge University Press, 1967, volume 1, pages 466–467 and 473–475.
"Integral of Secant". MIT OpenCourseWare.
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for any real number x:
In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, trigonometric substitution is the replacement of trigonometric functions for other expressions. In calculus, trigonometric substitution is a technique for evaluating integrals. Moreover, one may use the trigonometric identities to simplify certain integrals containing radical expressions. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
In mathematics, the Clausen function, introduced by Thomas Clausen (1832), is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following:
In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:
The exsecant and excosecant are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astronomy, and spherical trigonometry and could help improve accuracy, but are rarely used today except to simplify some calculations.
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form
Cylindrical multipole moments are the coefficients in a series expansion of a potential that varies logarithmically with the distance to a source, i.e., as . Such potentials arise in the electric potential of long line charges, and the analogous sources for the magnetic potential and gravitational potential.
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus:
Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss.
In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. The general transformation formula is:
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.