Corpuscular theory of light

Last updated

In optics, the corpuscular theory of light, arguably set forward by Descartes in 1637, states that light is made up of small discrete particles called "corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period.


Isaac Newton was a pioneer of this theory; he notably elaborated upon it in 1672. This early conception of the particle theory of light was an early forerunner to the modern understanding of the photon. This theory cannot explain refraction, diffraction and interference, which require an understanding of the wave theory of light of Christiaan Huygens.

Mechanical philosophy

In the early 17th century, natural philosophers were seeking new information to replace Aristotelianism, which had been for centuries the dominant scientific theory. Various European philosophers adopted what came to be known as mechanical philosophy sometime between around 1610 to 1650, which described the universe and its contents as a kind of large-scale mechanism, a philosophy that explained the universe is made with matter and motion. [1] This mechanical philosophy was based on Epicureanism, and the work of Leucippus and his pupil Democritus and their atomism, in which everything in the universe, including a person's body, mind, soul and even thoughts, was made of atoms; very small particles of moving matter. During the early part of the 17th century, the atomistic portion of mechanical philosophy was largely developed by Gassendi, René Descartes and other atomists.

Pierre Gassendi's atomist matter theory

The core of Pierre Gassendi's philosophy is his atomist matter theory. In his great work, Syntagma Philosophicum, ("Philosophical Treatise"), published posthumously in 1658, Gassendi tried to explain aspects of matter and natural phenomena of the world in terms of atoms and the void. He took Epicurean atomism and modified it to be compatible with Christian theology, by suggesting several key changes to it: [1]

  1. God exists
  2. God created a finite number of indivisible and moving atoms
  3. God has a continuing divine relationship to creation (of matter)
  4. Humans have free will
  5. The human soul exists
  6. God was not born and will never die (God was always here and will always be)

Gassendi thought that atoms move in an empty space, classically known as the void, which contradicts the Aristotelian view that the universe is fully made of matter. Gassendi also suggests that information gathered by the human senses has a material form, especially in the case of vision. [2]

Corpuscular theories

Corpuscular theories, or corpuscularianism, are similar to the theories of atomism, except that in atomism the atoms were supposed to be indivisible, whereas corpuscles could in principle be divided. Corpuscles are single, infinitesimally small, particles that have shape, size, color, and other physical properties that alter their functions and effects in phenomena in the mechanical and biological sciences. This later led to the modern idea that compounds have secondary properties different from the elements of those compounds. Gassendi asserts that corpuscles are particles that carry other substances or substances and are of different types. These corpuscles are also emissions from various sources such as solar entities, animals, or plants. Robert Boyle was a strong proponent of corpuscularianism and used the theory to exemplify the differences between a vacuum and a plenum, by which he aimed to further support his mechanical philosophy and overall atomist theory. [2] About a half-century after Gassendi, Isaac Newton used existing corpuscular theories to develop his particle theory of the physics of light. [3]

Isaac Newton argued that the geometric nature of reflection and refraction of light could only be explained if light were made of particles, referred to as corpuscles because waves do not tend to travel in straight lines. Newton sought to disprove Christiaan Huygens' theory that light was made of waves. In his 44th trial in a series of experiments concerning the physics of light, he concluded that light is made of particles and not waves by having passed a beam of white light through two prisms which were held at such an angle that the light split into a spectrum after passing through the first prism and then was recomposed, back into white light, by the second prism.[ citation needed ]

Isaac Newton

The corpuscular theory was largely developed by Isaac Newton, whose theory was predominant for more than 100 years and took precedence over Huygens' wave theory of light, partly because of Newton's great prestige. [4] When the corpuscular theory failed to adequately explain the diffraction, interference and polarization of light it was abandoned in favour of Huygens' wave theory. To some extent, Newton's corpuscular (particle) theory of light re-emerged in the 20th century, as a light phenomenon is currently explained as particle and wave.

Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein's description of Newton's conception of physical reality:

[Newton's] physical reality is characterised by concepts of space, time, the material point and force (interaction between material points). Physical events are to be thought of as movements according to the law of material points in space. The material point is the only representative of reality in so far as it is subject to change. The concept of the material point is obviously due to observable bodies; one conceived of the material point on the analogy of movable bodies by omitting characteristics of extension, form, spatial locality, and all their 'inner' qualities, retaining only inertia, translation, and the additional concept of force. [5] [6]

  1. Every source of light emits large numbers of tiny particles known as corpuscles in a medium surrounding the source.
  2. These corpuscles are perfectly elastic, rigid, and weightless. [7]


The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time the polarization was considered as the proof of the particle theory.

See also

Related Research Articles

Augustin-Jean Fresnel 18/19th-century French civil engineer and optical physicist

Augustin-Jean Fresnel was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theory, from the late 1830s  until the end of the 19th century. He is perhaps better known for inventing the catadioptric (reflective/refractive) Fresnel lens and for pioneering the use of "stepped" lenses to extend the visibility of lighthouses, saving countless lives at sea. The simpler dioptric stepped lens, first proposed by Count Buffon ​ and independently reinvented by Fresnel, is used in screen magnifiers and in condenser lenses for overhead projectors.

Atomic theory Model for understanding elemental particles

Atomic theory is the scientific theory that matter is composed of particles called atoms. Atomic theory traces its origins to an ancient philosophical tradition known as atomism. According to this idea, if one were to take a lump of matter and cut it into ever smaller pieces, one would eventually reach a point where the pieces could not be further cut into anything smaller. Ancient Greek philosophers called these hypothetical ultimate particles of matter atomos, a word which meant "uncut".

History of physics Historical development of physics

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics.

Light Electromagnetic radiation within the range of wavelengths perceptible by human eyes (400-700 nm)

Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that is perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), between the infrared and the ultraviolet. This wavelength means a frequency range of roughly 430–750 terahertz (THz).

Luminiferous aether Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

Optics Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Photon Elementary particle or quantum of light

The photon is a type of elementary particle. It is the quantum of the electromagnetic field including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s. The photon belongs to the class of bosons.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

Prism Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The traditional geometrical shape of an optical prism is that of a triangular prism with a triangular base and rectangular sides, and in colloquial use "prism" usually refers to this type. Some types of optical prism are not in fact in the shape of geometric prisms. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

The mechanical philosophy is a form of natural philosophy which compares the universe to a large-scale mechanism. The mechanical philosophy is associated with the scientific revolution of Early Modern Europe. One of the first expositions of universal mechanism is found in the opening passages of Leviathan by Hobbes published in 1651.

In physics, action at a distance is the concept that an object can be moved, changed, or otherwise affected without being physically touched by another object. That is, it is the non-local interaction of objects that are separated in space.

<i>Opticks</i> Book by Isaac Newton

Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light is a book by English natural philosopher Isaac Newton that was published in English in 1704. The book analyzes the fundamental nature of light by means of the refraction of light with prisms and lenses, the diffraction of light by closely spaced sheets of glass, and the behaviour of color mixtures with spectral lights or pigment powders. Opticks was Newton's second major book on physical science and it is considered one of the three major works on optics during the Scientific Revolution. Newton's name did not appear on the title page of the first edition of Opticks.

The deductive-nomological model of scientific explanation, also known as Hempel's model, the Hempel–Oppenheim model, the Popper–Hempel model, or the covering law model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure—that is, one where truth of its premises entails truth of its conclusion—hinged on accurate prediction or postdiction of the phenomenon to be explained.

In physics, aether theories propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models.

Optics began with the development of lenses by the ancient Egyptians and Mesopotamians, followed by theories on light and vision developed by ancient Greek philosophers, and the development of geometrical optics in the Greco-Roman world. The word optics is derived from the Greek term τα ὀπτικά meaning "appearance, look". Optics was significantly reformed by the developments in the medieval Islamic world, such as the beginnings of physical and physiological optics, and then significantly advanced in early modern Europe, where diffractive optics began. These earlier studies on optics are now known as "classical optics". The term "modern optics" refers to areas of optical research that largely developed in the 20th century, such as wave optics and quantum optics.

Corpuscle or corpuscule, meaning a "small body", is often used as a synonym for particle. It may also refer to:

Corpuscularianism is a set of theories that explain natural transformations as a result of the interaction of particles. It differs from atomism in that corpuscles are usually endowed with a property of their own and are further divisible, while atoms are neither. Although often associated with the emergence of early modern mechanical philosophy, and especially with the names of Thomas Hobbes, René Descartes, Pierre Gassendi, Robert Boyle, Isaac Newton, and John Locke, corpuscularian theories can be found throughout the history of Western philosophy.

Atomism is a natural philosophy proposing that the physical world is composed of fundamental indivisible components known as atoms.

Quaestiones quaedam philosophicae is the name given to a set of notes that Isaac Newton kept for himself during his earlier years in Cambridge. They concern questions in the natural philosophy of the day that interested him. Apart from the light it throws on the formation of his own agenda for research, the major interest in these notes is the documentation of the unaided development of the scientific method in the mind of Newton, whereby every question is put to experimental test.

<i>Treatise on Light</i> Book by Christiaan Huygens

Treatise on Light: In Which Are Explained The Causes of That Which Occurs in Reflection & Refraction is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens' conception of the nature of light which makes it possible to explain the laws of geometrical optics as shown in Descartes' Dioptrique, which Huygens aimed to replace.


  1. 1 2 permalink Reconfiguring the World: Nature, God, and Human Understanding from the Middle Ages to Early Modern Europe. Osler, Margaret J. Baltimore; Maryland, U.S. : The Johns Hopkins University Press. 2010. pp. 78–82, pp. 84–86.
  2. 1 2 Stanford Encyclopedia of Philosophy: Pierre Gassendi. Fisher, Saul. 2009.
  3. – Newton's Particle Theory of Light Lecture notes. Lindgren, Richard A. Research Professor of Physics. The University of Virginia, Department of Physics.
  4. Aspect, Alain (November 2017). "From Huygens' waves to Einstein's photons: Weird light". Comptes Rendus Physique. 18 (9–10): 498–503. Bibcode:2017CRPhy..18..498A. doi: 10.1016/j.crhy.2017.11.005 .
  5. Maxwell's Influence on the Development of the Conception of Physical reality (Sonja Bargmann's 1954 Eng. Translation), an appreciation by Albert Einstein, pp. 29–32, The Dynamical Theory of the Electromagnetic Field (1865), James Clerk Maxwell, edited by Thomas F. Torrance (1982); Eugene, Oregon: Wipf and Stock Publishers, 1996
  6. Maxwell's influence on the development of the conception of physical reality , Albert Einstein, in James Clerk Maxwell: A Commemorative Volume 1831-1931 (Cambridge, 1931), pp. 66–73
  7. Opticks, or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light. Sir Isaac Newton. 1704. Project Gutenberg ebook released 23 August 2010.