Corpuscular theory of light

Last updated

In optics, the corpuscular theory of light states that light is made up of small discrete particles called "corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period.

Contents

Isaac Newton laid the foundations for this theory through his work in optics. This early conception of the particle theory of light was an early forerunner to the modern understanding of the photon. This theory came to dominate the conceptions of light in the eighteenth century, displacing the previously prominent vibration theories, where light was viewed as "pressure" of the medium between the source and the receiver, first championed by René Descartes, and later in a more refined form by Christiaan Huygens. [1] It would fall out of favor in the early nineteenth century, as the wave theory of light amassed new experimental evidence.

Mechanical philosophy

In the early 17th century, natural philosophers began to develop new ways to understand nature gradually replacing Aristotelianism, which had been for centuries the dominant scientific theory, during the process known as the Scientific Revolution. Various European philosophers adopted what came to be known as mechanical philosophy sometime between around 1610 to 1650, which described the universe and its contents as a kind of large-scale mechanism, a philosophy that explained the universe is made with matter and motion. [2] This mechanical philosophy was based on Epicureanism, and the work of Leucippus and his pupil Democritus and their atomism, in which everything in the universe, including a person's body, mind, soul and even thoughts, was made of atoms; very small particles of moving matter. During the early part of the 17th century, the atomistic portion of mechanical philosophy was largely developed by Gassendi, René Descartes and other atomists.

Pierre Gassendi's atomist matter theory

The core of Pierre Gassendi's philosophy is his atomist matter theory. In his great work, Syntagma Philosophicum, ("Philosophical Treatise"), published posthumously in 1658, Gassendi tried to explain aspects of matter and natural phenomena of the world in terms of atoms and the void. He took Epicurean atomism and modified it to be compatible with Christian theology, by suggesting several key changes to it: [2]

  1. God exists
  2. God created a finite number of indivisible and moving atoms
  3. God has a continuing divine relationship to creation (of matter)
  4. Humans have free will
  5. The human soul exists
  6. God was not born and will never die (God was always here and will always be)

Gassendi thought that atoms move in an empty space, classically known as the void, which contradicts the Aristotelian view that the universe is fully made of matter. Gassendi also suggests that information gathered by the human senses has a material form, especially in the case of vision. [3]

Corpuscular theories

Corpuscular theories, or corpuscularianism, are similar to the theories of atomism, except that in atomism the atoms were supposed to be indivisible, whereas corpuscles could in principle be divided. Corpuscles are single, infinitesimally small, particles that have shape, size, color, and other physical properties that alter their functions and effects in phenomena in the mechanical and biological sciences. This later led to the modern idea that compounds have secondary properties different from the elements of those compounds. Gassendi asserts that corpuscles are particles that carry other substances and are of different types. These corpuscles are also emissions from various sources such as solar entities, animals, or plants. Robert Boyle was a strong proponent of corpuscularianism and used the theory to exemplify the differences between a vacuum and a plenum, by which he aimed to further support his mechanical philosophy and overall atomist theory. [3] About a half-century after Gassendi, Isaac Newton used existing corpuscular theories to develop his particle theory of the physics of light. [4]

Isaac Newton

Isaac Newton worked on optics throughout his research career, conducting various experiments and developing hypotheses to explain his results. [5] He dismissed Descartes' theory of light because he rejected Descartes’ understanding of space, which derived from it. [6] With the publication of Opticks in 1704, Newton for the first time took a clear position supporting a corpuscular interpretation, though it would fall on his followers to systemise the theory. [7] In the book, Newton argued that the geometric nature of reflection and refraction of light could only be explained if light were made of particles because waves do not tend to travel in straight lines.

Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein's description of Newton's conception of physical reality:

[Newton's] physical reality is characterised by concepts of space, time, the material point and force (interaction between material points). Physical events are to be thought of as movements according to the law of material points in space. The material point is the only representative of reality in so far as it is subject to change. The concept of the material point is obviously due to observable bodies; one conceived of the material point on the analogy of movable bodies by omitting characteristics of extension, form, spatial locality, and all their 'inner' qualities, retaining only inertia, translation, and the additional concept of force. [8] [9]

  1. Every source of light emits large numbers of tiny particles known as corpuscles in a medium surrounding the source.
  2. These corpuscles are perfectly elastic, rigid, and weightless. [10]

Polarization

The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time polarization was considered proof of the particle theory. Nowadays, polarisation is considered a property of waves and may only manifest in transverse waves. Longitudinal waves may not be polarised.

End of corpuscular theory

The dominance of Newtonian natural philosophy in the eighteenth century was one of the decisive factors ensuring the prevalence of the corpuscular theory of light. [11] Newtonians maintained that the corpuscles of light were projectiles that travelled from the source to the receiver with a finite speed. In this description, the propagation of light is transportation of matter.

However by the turn of the century, beginning with Thomas Young's double-slit experiment in 1801, more evidence in the form of novel experiments on diffraction, interference, and polarization showcased issues with the theory. A wave theory based on Young, Augustin-Jean Fresnel and François Arago's work would materialise in a novel wave theory of light. [12] To some extent, Newton's corpuscular (particle) theory of light re-emerged in the 20th century, as a light phenomenon is currently explained as particle and wave.

See also

Related Research Articles

<span class="mw-page-title-main">History of physics</span> Historical development of physics

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Historically, physics emerged from the scientific revolution of the 17th century, grew rapidly in the 19th century, then was transformed by a series of discoveries in the 20th century. Physics today may be divided loosely into classical physics and modern physics.

<span class="mw-page-title-main">Light</span> Electromagnetic radiation humans can see

Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz. The visible band sits adjacent to the infrared and the ultraviolet, called collectively optical radiation.

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light when in vacuum. The photon belongs to the class of boson particles.

Nothing, no-thing, or no thing, is the complete absence of anything as the opposite of something and an antithesis of everything. The concept of nothing has been a matter of philosophical debate since at least the 5th century BC. Early Greek philosophers argued that it was impossible for nothing to exist. The atomists allowed nothing but only in the spaces between the invisibly small atoms. For them, all space was filled with atoms. Aristotle took the view that there exists matter and there exists space, a receptacle into which matter objects can be placed. This became the paradigm for classical scientists of the modern age like Newton. Nevertheless, some philosophers, like Descartes, continued to argue against the existence of empty space until the scientific discovery of a physical vacuum.

<i>Opticks</i> Book by Isaac Newton

Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light is a book by Isaac Newton that was published in English in 1704. The book analyzes the fundamental nature of light by means of the refraction of light with prisms and lenses, the diffraction of light by closely spaced sheets of glass, and the behaviour of color mixtures with spectral lights or pigment powders. Opticks was Newton's second major book on physical science and it is considered one of the three major works on optics during the Scientific Revolution. Newton's name did not appear on the title page of the first edition of Opticks.

<i>The World</i> (book) Book by René Descartes

The World, also called Treatise on the Light, is a book by René Descartes (1596–1650). Written between 1629 and 1633, it contains a nearly complete version of his philosophy, from method, to metaphysics, to physics and biology.

In physics, aether theories propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models."

<span class="mw-page-title-main">History of optics</span>

Optics began with the development of lenses by the ancient Egyptians and Mesopotamians, followed by theories on light and vision developed by ancient Greek philosophers, and the development of geometrical optics in the Greco-Roman world. The word optics is derived from the Greek term τα ὀπτικά meaning 'appearance, look'. Optics was significantly reformed by the developments in the medieval Islamic world, such as the beginnings of physical and physiological optics, and then significantly advanced in early modern Europe, where diffractive optics began. These earlier studies on optics are now known as "classical optics". The term "modern optics" refers to areas of optical research that largely developed in the 20th century, such as wave optics and quantum optics.

Corpuscle or corpuscule, meaning a "small body", is often used as a synonym for particle. It may also refer to:

Corpuscularianism, also known as corpuscularism, is a set of theories that explain natural transformations as a result of the interaction of particles. It differs from atomism in that corpuscles are usually endowed with a property of their own and are further divisible, while atoms are neither. Although often associated with the emergence of early modern mechanical philosophy, and especially with the names of Thomas Hobbes, René Descartes, Pierre Gassendi, Robert Boyle, Isaac Newton, and John Locke, corpuscularian theories can be found throughout the history of Western philosophy.

Atomism is a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms.

<span class="mw-page-title-main">History of molecular theory</span>

In chemistry, the history of molecular theory traces the origins of the concept or idea of the existence of strong chemical bonds between two or more atoms.

Mechanical explanations of gravitation are attempts to explain the action of gravity by aid of basic mechanical processes, such as pressure forces caused by pushes, without the use of any action at a distance. These theories were developed from the 16th until the 19th century in connection with the aether. However, such models are no longer regarded as viable theories within the mainstream scientific community and general relativity is now the standard model to describe gravitation without the use of actions at a distance. Modern "quantum gravity" hypotheses also attempt to describe gravity by more fundamental processes such as particle fields, but they are not based on classical mechanics.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">Matter</span> Something that has mass and volume

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states. These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

Quaestiones quaedam philosophicae is the name given to a set of notes that Isaac Newton kept for himself during his earlier years in Cambridge. They concern questions in the natural philosophy of the day that interested him. Apart from the light it throws on the formation of his own agenda for research, the major interest in these notes is the documentation of the unaided development of the scientific method in the mind of Newton, whereby every question is put to experimental test.

Minima naturalia were theorized by Aristotle as the smallest parts into which a homogeneous natural substance could be divided and still retain its essential character. In this context, "nature" means formal nature. Thus, "natural minimum" may be taken to mean "formal minimum": the minimum amount of matter necessary to instantiate a certain form.

<i>Treatise on Light</i> Book by Christiaan Huygens

Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens's conception of the nature of light propagation which makes it possible to explain the laws of geometrical optics shown in Descartes's Dioptrique, which Huygens aimed to replace.

References

  1. Paolo Mancoso, “Accoustics and Optics,” in The Cambridge History of Science Volume 3: Early Modern Science ed. Katharine Park and Lorraine Daston (Cambridge: Cambridge University Press, 2006), 623-626.
  2. 1 2 Osler, Margaret J. (2010). Reconfiguring the World: Nature, God, and Human Understanding from the Middle Ages to Early Modern Europe. Baltimore; Maryland, U.S.: The Johns Hopkins University Press. pp. 78–82, 84–86. ISBN   978-0801896552.
  3. 1 2 plato.stanford.edu Stanford Encyclopedia of Philosophy: Pierre Gassendi. Fisher, Saul. 2009.
  4. virginia.edu – Newton's Particle Theory of Light Lecture notes. Lindgren, Richard A. Research Professor of Physics. The University of Virginia, Department of Physics.
  5. Alan E. Shapiro, “Newton’s Optics,” in The Oxford Handbook of the History of Physics ed. Jed Z. Buchwald and Robert Fox (Oxford: Oxford University Press, 2013).
  6. Olivier Darrigol, A History of Optics: From Greek Antiquity to the Nineteenth Century, (Oxford: Oxford University Press, 2012), 80.
  7. Geoffrey Cantor, Optics after Newton: Theories of Light in Britain and Ireland, 1704-1840 (Manchester: Manchester University Press, 1983), 11-12, 24-26.
  8. Maxwell's Influence on the Development of the Conception of Physical reality (Sonja Bargmann's 1954 Eng. Translation), an appreciation by Albert Einstein, pp. 29–32, The Dynamical Theory of the Electromagnetic Field (1865), James Clerk Maxwell, edited by Thomas F. Torrance (1982); Eugene, Oregon: Wipf and Stock Publishers, 1996
  9. Maxwell's influence on the development of the conception of physical reality , Albert Einstein, in James Clerk Maxwell: A Commemorative Volume 1831-1931 (Cambridge, 1931), pp. 66–73
  10. gutenberg.org Opticks, or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light. Sir Isaac Newton. 1704. Project Gutenberg ebook released 23 August 2010.
  11. Darrigol, A History of Optics, 164-165.
  12. Aspect, Alain (November 2017). "From Huygens' waves to Einstein's photons: Weird light". Comptes Rendus Physique. 18 (9–10): 498–503. Bibcode:2017CRPhy..18..498A. doi: 10.1016/j.crhy.2017.11.005 .