In single-variable calculus, the difference quotient is usually the name for the expression
which when taken to the limit as h approaches 0 gives the derivative of the function f. [1] [2] [3] [4] The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). [5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [7] [8] : 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. [9]
By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient
is called [5] the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval. [5] Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)). [10]
Difference quotients are used as approximations in numerical differentiation, [8] but they have also been subject of criticism in this application. [11]
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.
The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]
The typical notion of the difference quotient discussed above is a particular case of a more general concept. The primary vehicle of calculus and other higher mathematics is the function. Its "input value" is its argument, usually a point ("P") expressible on a graph. The difference between two points, themselves, is known as their Delta (ΔP), as is the difference in their function result, the particular notation being determined by the direction of formation:
The general preference is the forward orientation, as F(P) is the base, to which differences (i.e., "ΔP"s) are added to it. Furthermore,
The function difference divided by the point difference is known as "difference quotient":
If ΔP is infinitesimal, then the difference quotient is a derivative , otherwise it is a divided difference :
Regardless if ΔP is infinitesimal or finite, there is (at least—in the case of the derivative—theoretically) a point range, where the boundaries are P ± (0.5) ΔP (depending on the orientation—ΔF(P), δF(P) or ∇F(P)):
Derivatives can be regarded as functions themselves, harboring their own derivatives. Thus each function is home to sequential degrees ("higher orders") of derivation, or differentiation. This property can be generalized to all difference quotients.
As this sequencing requires a corresponding boundary splintering, it is practical to break up the point range into smaller, equi-sized sections, with each section being marked by an intermediary point (Pi), where LB = P0 and UB = Pń, the nth point, equaling the degree/order:
LB = P0 = P0 + 0Δ1P = Pń − (Ń-0)Δ1P; P1 = P0 + 1Δ1P = Pń − (Ń-1)Δ1P; P2 = P0 + 2Δ1P = Pń − (Ń-2)Δ1P; P3 = P0 + 3Δ1P = Pń − (Ń-3)Δ1P; ↓ ↓ ↓ ↓ Pń-3 = P0 + (Ń-3)Δ1P = Pń − 3Δ1P; Pń-2 = P0 + (Ń-2)Δ1P = Pń − 2Δ1P; Pń-1 = P0 + (Ń-1)Δ1P = Pń − 1Δ1P; UB = Pń-0 = P0 + (Ń-0)Δ1P = Pń − 0Δ1P = Pń;
ΔP = Δ1P = P1 − P0 = P2 − P1 = P3 − P2 = ... = Pń − Pń-1;
ΔB = UB − LB = Pń − P0 = ΔńP = ŃΔ1P.
There are other derivative notations, but these are the most recognized, standard designations.
The quintessential application of the divided difference is in the presentation of the definite integral, which is nothing more than a finite difference:
Given that the mean value, derivative expression form provides all of the same information as the classical integral notation, the mean value form may be the preferable expression, such as in writing venues that only support/accept standard ASCII text, or in cases that only require the average derivative (such as when finding the average radius in an elliptic integral). This is especially true for definite integrals that technically have (e.g.) 0 and either or as boundaries, with the same divided difference found as that with boundaries of 0 and (thus requiring less averaging effort):
This also becomes particularly useful when dealing with iterated and multiple integrals (ΔA = AU − AL, ΔB = BU − BL, ΔC = CU − CL):
Hence,
and
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.
A finite difference is a mathematical expression of the form f (x + b) − f (x + a). If a finite difference is divided by b − a, one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset.
In calculus, the product rule is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as
In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.
The Newmark-beta method is a method of numerical integration used to solve certain differential equations. It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems. The method is named after Nathan M. Newmark, former Professor of Civil Engineering at the University of Illinois at Urbana–Champaign, who developed it in 1959 for use in structural dynamics. The semi-discretized structural equation is a second order ordinary differential equation system,
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically deforming materials and other fluids and biological soft tissue.
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form
In mathematics, the Fubini–Study metric is a Kähler metric on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
In numerical methods, total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations. The most notable application of this method is in computational fluid dynamics. The concept of TVD was introduced by Ami Harten.
In computational fluid dynamics, the MacCormack method is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. The MacCormack method is elegant and easy to understand and program.
The Thomas–Fermi (TF) model, named after Llewellyn Thomas and Enrico Fermi, is a quantum mechanical theory for the electronic structure of many-body systems developed semiclassically shortly after the introduction of the Schrödinger equation. It stands separate from wave function theory as being formulated in terms of the electronic density alone and as such is viewed as a precursor to modern density functional theory. The Thomas–Fermi model is correct only in the limit of an infinite nuclear charge. Using the approximation for realistic systems yields poor quantitative predictions, even failing to reproduce some general features of the density such as shell structure in atoms and Friedel oscillations in solids. It has, however, found modern applications in many fields through the ability to extract qualitative trends analytically and with the ease at which the model can be solved. The kinetic energy expression of Thomas–Fermi theory is also used as a component in more sophisticated density approximation to the kinetic energy within modern orbital-free density functional theory.
In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by
In mathematics, Sobolev spaces for planar domains are one of the principal techniques used in the theory of partial differential equations for solving the Dirichlet and Neumann boundary value problems for the Laplacian in a bounded domain in the plane with smooth boundary. The methods use the theory of bounded operators on Hilbert space. They can be used to deduce regularity properties of solutions and to solve the corresponding eigenvalue problems.
Discretization of the Navier–Stokes equations of fluid dynamics is a reformulation of the equations in such a way that they can be applied to computational fluid dynamics. Several methods of discretization can be applied:
In solid mechanics, the linear stability analysis of an elastic solution is studied using the method of incremental deformations superposed on finite deformations. The method of incremental deformation can be used to solve static, quasi-static and time-dependent problems. The governing equations of the motion are ones of the classical mechanics, such as the conservation of mass and the balance of linear and angular momentum, which provide the equilibrium configuration of the material. The main corresponding mathematical framework is described in the main Raymond Ogden's book Non-linear elastic deformations and in Biot's book Mechanics of incremental deformations, which is a collection of his main papers.