Hypotheses non fingo

Last updated

Hypotheses non fingo (Latin for "I feign no hypotheses", "I frame no hypotheses", or "I contrive no hypotheses") is a phrase used by Isaac Newton in an essay, "General Scholium", which was appended to the second (1713) edition of the Principia .

Contents

Original remark

A 1999 translation of the Principia presents Newton's remark as follows:

I have not as yet been able to discover the reason for these properties of gravity from phenomena, and I do not feign hypotheses. For whatever is not deduced from the phenomena must be called a hypothesis; and hypotheses, whether metaphysical or physical, or based on occult qualities, or mechanical, have no place in experimental philosophy. In this philosophy particular propositions are inferred from the phenomena, and afterwards rendered general by induction. [1]

Later commentary

The 19th-century philosopher of science William Whewell qualified this statement, saying that, "it was by such a use of hypotheses, that both Newton himself and Kepler, on whose discoveries those of Newton were based, made their discoveries". Whewell stated:

What is requisite is, that the hypothesis should be close to the facts, and not connected with them by other arbitrary and untried facts; and that the philosopher should be ready to resign it as soon as the facts refuse to confirm it. [2]

Later, Imre Lakatos asserted that such a resignation should not be too rushed.[ citation needed ]

See also

Related Research Articles

Isaac Newton Influential British physicist and mathematician

Sir Isaac Newton was an English mathematician, physicist, astronomer, theologian, and author who is widely recognised as one of the greatest mathematicians and most influential scientists of all time and as a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica, first published in 1687, established classical mechanics. Newton also made seminal contributions to optics, and shares credit with Gottfried Wilhelm Leibniz for developing the infinitesimal calculus.

Scientific method Interplay between observation, experiment and theory in science

The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century. It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based testing of deductions drawn from the hypotheses; and refinement of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.

The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology and chemistry transformed the views of society about nature. The Scientific Revolution took place in Europe towards the end of the Renaissance period and continued through the late 18th century, influencing the intellectual social movement known as the Enlightenment. While its dates are debated, the publication in 1543 of Nicolaus Copernicus' De revolutionibus orbium coelestium is often cited as marking the beginning of the Scientific Revolution.

Natural science Branch of science about the natural world

Natural science is a branch of science concerned with the description, prediction, and understanding of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatability of findings are used to try to ensure the validity of scientific advances.

<i>Philosophiæ Naturalis Principia Mathematica</i> 1687 tract by Isaac Newton

Philosophiæ Naturalis Principia Mathematica by Isaac Newton, often referred to as simply the Principia, is a work in three books written in Latin, first published 5 July 1687. After annotating and correcting his personal copy of the first edition, Newton published two further editions, during 1713 with errors of the 1687 corrected, and an improved version of 1726.

A scientific theory is an explanation of an aspect of the natural world and universe that can be repeatedly tested and verified in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.

William Whewell 19th-century English scientist and theologian

Rev Dr William Whewell DD was an English polymath, scientist, Anglican priest, philosopher, theologian, and historian of science. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics.

Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. The publication of the theory has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.

The year 1713 in science and technology involved some significant events.

In the sciences, an experimentum crucis is an experiment capable of decisively determining whether or not a particular hypothesis or theory is superior to all other hypotheses or theories whose acceptance is currently widespread in the scientific community. In particular, such an experiment must typically be able to produce a result that rules out all other hypotheses or theories if true, thereby demonstrating that under the conditions of the experiment, those hypotheses and theories are proven false but the experimenter's hypothesis is not ruled out.

Isaac Newton composed Principia Mathematica during 1685 and 1686, and it was published in a first edition on 5 July 1687. Widely regarded as one of the most important works in both the science of physics and in applied mathematics during the Scientific Revolution, the work underlies much of the technological and scientific advances from the Industrial Revolution which it helped to create.

<i>Opticks</i> Book by Isaac Newton

Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light is a book by English natural philosopher Isaac Newton that was published in English in 1704. The book analyzes the fundamental nature of light by means of the refraction of light with prisms and lenses, the diffraction of light by closely spaced sheets of glass, and the behaviour of color mixtures with spectral lights or pigment powders. It is considered one of the great works of science in history. Opticks was Newton's second major book on physical science. Newton's name did not appear on the title page of the first edition of Opticks.

Scholarly method

The scholarly method or scholarship is the body of principles and practices used by scholars and academics to make their claims about the subject as valid and trustworthy as possible, and to make them known to the scholarly public. It is the methods that systemically advance the teaching, research, and practice of a given scholarly or academic field of study through rigorous inquiry. Scholarship is noted by its significance to its particular profession, and is creative, can be documented, can be replicated or elaborated, and can be and is peer-reviewed through various methods. The Scholarly Method includes the subcategories of the Scientific Method, in which scientists prove their claims and the Historical Method, in which historians verify their claims.

De motu corporum in gyrum is the presumed title of a manuscript by Isaac Newton sent to Edmond Halley in November 1684. The manuscript was prompted by a visit from Halley earlier that year when he had questioned Newton about problems then occupying the minds of Halley and his scientific circle in London, including Sir Christopher Wren and Robert Hooke.

Copernican Revolution 16th to 17th century intellectual revolution

The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar System. This revolution consisted of two phases; the first being extremely mathematical in nature and the second phase starting in 1610 with the publication of a pamphlet by Galileo. Beginning with the publication of Nicolaus Copernicus’s De revolutionibus orbium coelestium, contributions to the “revolution” continued until finally ending with Isaac Newton’s work over a century later.

The history of scientific method considers changes in the methodology of scientific inquiry, as distinct from the history of science itself. The development of rules for scientific reasoning has not been straightforward; scientific method has been the subject of intense and recurring debate throughout the history of science, and eminent natural philosophers and scientists have argued for the primacy of one or another approach to establishing scientific knowledge. Despite the disagreements about approaches, scientific method has advanced in definite steps. Rationalist explanations of nature, including atomism, appeared both in ancient Greece in the thought of Leucippus and Democritus, and in ancient India, in the Nyaya, Vaisesika and Buddhist schools, while Charvaka materialism rejected inference as a source of knowledge in favour of an empiricism that was always subject to doubt. Aristotle pioneered scientific method in ancient Greece alongside his empirical biology and his work on logic, rejecting a purely deductive framework in favour of generalisations made from observations of nature.

Mechanical explanations of gravitation are attempts to explain the action of gravity by aid of basic mechanical processes, such as pressure forces caused by pushes, without the use of any action at a distance. These theories were developed from the 16th until the 19th century in connection with the aether. However, such models are no longer regarded as viable theories within the mainstream scientific community and general relativity is now the standard model to describe gravitation without the use of actions at a distance. Modern "quantum gravity" hypotheses also attempt to describe gravity by more fundamental processes such as particle fields, but they are not based on classical mechanics.

The "General Scholium" is an essay written by Isaac Newton, appended to his work of Philosophiæ Naturalis Principia Mathematica, known as the Principia. It was first published with the second (1713) edition of the Principia and reappeared with some additions and modifications on the third (1726) edition. It is best known for the "Hypotheses non fingo" expression, which Newton used as a response to some of the criticism received after the release of the first edition (1687). In the essay Newton not only counters the natural philosophy of René Descartes and Gottfried Leibniz, but also addresses issues of scientific methodology, theology, and metaphysics.

Newtonianism

Newtonianism is a philosophical and scientific doctrine inspired by the beliefs and methods of natural philosopher Isaac Newton. While Newton's influential contributions were primarily in physics and mathematics, his broad conception of the universe as being governed by rational and understandable laws laid the foundation for many strands of Enlightenment thought. Newtonianism became an influential intellectual program that applied Newton's principles in many avenues of inquiry, laying the groundwork for modern science, in addition to influencing philosophy, political thought and theology.

Hypothesis Proposed explanation for an observation, phenomenon, or scientific problem

A hypothesis is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used synonymously, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research, in a process beginning with an educated guess or thought.

References

  1. Isaac Newton (1726). Philosophiae Naturalis Principia Mathematica , General Scholium. Third edition, page 943 of I. Bernard Cohen and Anne Whitman's 1999 translation, University of California Press ISBN   0-520-08817-4, 974 pages.
  2. Whewell, William (1840). The Philosophy of the Inductive Sciences. London. p. 438.