Tammes problem

Last updated
Some natural systems such as this coral require approximate solutions to problems similar to the Tammes problem Coral Sphere Flynn Reef.jpg
Some natural systems such as this coral require approximate solutions to problems similar to the Tammes problem

In geometry, the Tammes problem is a problem in packing a given number of points on the surface of a sphere such that the minimum distance between points is maximized. It is named after the Dutch botanist Pieter Merkus Lambertus Tammes (the nephew of pioneering botanist Jantina Tammes) who posed the problem in his 1930 doctoral dissertation on the distribution of pores on pollen grains. [1]

Contents

Unsolved problem in mathematics:
What is the optimal packing of circles on the surface of a sphere for every possible amount of circles?

It can be viewed as a particular special case of the generalized Thomson problem of minimizing the total Coulomb force of electrons in a spherical arrangement. [2] Thus far, solutions have been proven only for small numbers of circles: 3 through 14, and 24. [3] There are conjectured solutions for many other cases, including those in higher dimensions. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

The Kepler conjecture, named after the 17th-century mathematician and astronomer Johannes Kepler, is a mathematical theorem about sphere packing in three-dimensional Euclidean space. It states that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing and hexagonal close packing arrangements. The density of these arrangements is around 74.05%.

<span class="mw-page-title-main">Sphere packing</span> Geometrical structure

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions or to non-Euclidean spaces such as hyperbolic space.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing in a given space, a kissing number can also be defined for each individual sphere as the number of spheres it touches. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another.

<span class="mw-page-title-main">Reuleaux triangle</span> Curved triangle with constant width

A Reuleaux triangle is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. It is formed from the intersection of three circular disks, each having its center on the boundary of the other two. Constant width means that the separation of every two parallel supporting lines is the same, independent of their orientation. Because its width is constant, the Reuleaux triangle is one answer to the question "Other than a circle, what shape can a manhole cover be made so that it cannot fall down through the hole?"

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Close-packing of equal spheres</span> Dense arrangement of congruent spheres in an infinite, regular arrangement

In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement. Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is

László Fejes Tóth was a Hungarian mathematician who specialized in geometry. He proved that a lattice pattern is the most efficient way to pack centrally symmetric convex sets on the Euclidean plane. He also investigated the sphere packing problem. He was the first to show, in 1953, that proof of the Kepler conjecture can be reduced to a finite case analysis and, later, that the problem might be solved using a computer.

The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of N electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law. The physicist J. J. Thomson posed the problem in 1904 after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms.

A spherical design, part of combinatorial design theory in mathematics, is a finite set of N points on the d-dimensional unit d-sphereSd such that the average value of any polynomial f of degree t or less on the set equals the average value of f on the whole sphere. Such a set is often called a sphericalt-design to indicate the value of t, which is a fundamental parameter. The concept of a spherical design is due to Delsarte, Goethals, and Seidel, although these objects were understood as particular examples of cubature formulas earlier.

<span class="mw-page-title-main">Circle packing</span> Field of geometry closely arranging circles on a plane

In geometry, circle packing is the study of the arrangement of circles on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated packing density, η, of an arrangement is the proportion of the surface covered by the circles. Generalisations can be made to higher dimensions – this is called sphere packing, which usually deals only with identical spheres.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, dn, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2/dn.

<span class="mw-page-title-main">Double bubble theorem</span> On smallest surface enclosing two volumes

In the mathematical theory of minimal surfaces, the double bubble theorem states that the shape that encloses and separates two given volumes and has the minimum possible surface area is a standard double bubble: three spherical surfaces meeting at angles of 120° on a common circle. The double bubble theorem was formulated and thought to be true in the 19th century, and became a "serious focus of research" by 1989, but was not proven until 2002.

<span class="mw-page-title-main">Jantina Tammes</span> Dutch botanist and geneticist

Jantina "Tine" Tammes was a Dutch botanist and geneticist and the first professor of genetics in the Netherlands.

<span class="mw-page-title-main">Spherical conic</span> Curve on the sphere analogous to an ellipse or hyperbola

In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.

In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth.

References

  1. Pieter Merkus Lambertus Tammes (1930): On the number and arrangements of the places of exit on the surface of pollen-grains, University of Groningen
  2. Batagelj, Vladimir; Plestenjak, Bor. "Optimal arrangements of n points on a sphere and in a circle" (PDF). IMFM/TCS. Archived from the original (PDF) on 25 June 2018.
  3. Musin, Oleg R.; Tarasov, Alexey S. (2015). "The Tammes Problem for N = 14". Experimental Mathematics. 24 (4): 460–468. doi:10.1080/10586458.2015.1022842. S2CID   39429109.
  4. Sloane, N. J. A. "Spherical Codes: Nice arrangements of points on a sphere in various dimensions".

Bibliography

Journal articles
Books