5-demicubic honeycomb

Last updated
Demipenteractic honeycomb
(No image)
Type Uniform 5-honeycomb
Family Alternated hypercubic honeycomb
Schläfli symbols h{4,3,3,3,4}
h{4,3,3,31,1}
ht0,5{4,3,3,3,4}
h{4,3,3,4}h{}
h{4,3,31,1}h{}
ht0,4{4,3,3,4}h{}
h{4,3,4}h{}h{}
h{4,31,1}h{}h{}
Coxeter diagrams

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel label2.pngCDel branch hh.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png

Facets {3,3,3,4} 5-cube t4.svg
h{4,3,3,3} 5-demicube t0 D5.svg
Vertex figure t1{3,3,3,4} Rectified pentacross.svg
Coxeter group [4,3,3,31,1]
[31,1,3,31,1]

The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.

Contents

It is the first tessellation in the demihypercube honeycomb family which, with all the next ones, is not regular, being composed of two different types of uniform facets. The 5-cubes become alternated into 5-demicubes h{4,3,3,3} and the alternated vertices create 5-orthoplex {3,3,3,4} facets.

D5 lattice

The vertex arrangement of the 5-demicubic honeycomb is the D5 lattice which is the densest known sphere packing in 5 dimensions. [1] The 40 vertices of the rectified 5-orthoplex vertex figure of the 5-demicubic honeycomb reflect the kissing number 40 of this lattice. [2]

The D+
5
packing (also called D2
5
) can be constructed by the union of two D5 lattices. The analogous packings form lattices only in even dimensions. The kissing number is 24=16 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). [3]

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png

The D*
5
[4] lattice (also called D4
5
and C2
5
) can be constructed by the union of all four 5-demicubic lattices: [5] It is also the 5-dimensional body centered cubic, the union of two 5-cube honeycombs in dual positions.

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png = CDel nodes 10r.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel nodes 01r.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel branch.png.

The kissing number of the D*
5
lattice is 10 (2n for n≥5) and its Voronoi tessellation is a tritruncated 5-cubic honeycomb, CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 4a4b.pngCDel nodes.png, containing all bitruncated 5-orthoplex, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png Voronoi cells. [6]

Symmetry constructions

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 32 5-demicube facets around each vertex.

Coxeter group Schläfli symbol Coxeter-Dynkin diagram Vertex figure
Symmetry
Facets/verf
= [31,1,3,3,4]
= [1+,4,3,3,4]
h{4,3,3,3,4}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[3,3,3,4]
32: 5-demicube
10: 5-orthoplex
= [31,1,3,31,1]
= [1+,4,3,31,1]
h{4,3,3,31,1}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[32,1,1]
16+16: 5-demicube
10: 5-orthoplex
2×½ = [[(4,3,3,3,4,2+)]]ht0,5{4,3,3,3,4}CDel label2.pngCDel branch hh.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel branch.png16+8+8: 5-demicube
10: 5-orthoplex

This honeycomb is one of 20 uniform honeycombs constructed by the Coxeter group, all but 3 repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 20 permutations are listed with its highest extended symmetry relation:

D5 honeycombs
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
[31,1,3,31,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
<[31,1,3,31,1]>
↔ [31,1,3,3,4]
CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c4.pngCDel split1.pngCDel nodeab c5.png
CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c4.pngCDel 3.pngCDel node c5.pngCDel 4.pngCDel node.png
×21 = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png, CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png, CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png, CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png, CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png, CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png

[[31,1,3,31,1]]CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png×22CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png, CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
<2[31,1,3,31,1]>
↔ [4,3,3,3,4]
CDel nodeab c1.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c4.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c4.pngCDel 4.pngCDel node.png
×41 = CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
[<2[31,1,3,31,1]>]
↔ [[4,3,3,3,4]]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png
×8 = ×2CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png, CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png

See also

Regular and uniform honeycombs in 5-space:

Related Research Articles

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Uniform 9-polytope</span> Type of geometric object

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

<span class="mw-page-title-main">Tesseractic honeycomb</span> Concept in euclidean geometry

In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and consisting of a packing of tesseracts (4-hypercubes).

<span class="mw-page-title-main">16-cell honeycomb</span>

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.

The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.

The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation in Euclidean 6-space.

The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.

The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation in Euclidean 7-space.

In geometry, the 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation in Euclidean 8-space.

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

<span class="mw-page-title-main">Uniform 10-polytope</span> Type of geometrical object

In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge.

1<sub> 22</sub> polytope Uniform 6-polytope

In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).

In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.

In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.

<span class="mw-page-title-main">6-polytope</span>

In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.

In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.

In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.

In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 5-simplex facets.

In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.

References

  1. "The Lattice D5".
  2. Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai
  3. Conway (1998), p. 119
  4. "The Lattice D5".
  5. Conway (1998), p. 120
  6. Conway (1998), p. 466
Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb 0[n] δn hδn qδn 1k22k1k21