5-orthoplex

Last updated
Regular 5-orthoplex
(pentacross)
5-cube t4.svg
Orthogonal projection
inside Petrie polygon
TypeRegular 5-polytope
Family orthoplex
Schläfli symbol {3,3,3,4}
{3,3,31,1}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
4-faces32 {33} Cross graph 4.png
Cells80 {3,3} Cross graph 3.png
Faces80 {3} Cross graph 2.png
Edges40
Vertices10
Vertex figure Pentacross verf.png
16-cell
Petrie polygon decagon
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Dual 5-cube
Properties convex, Hanner polytope

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

Contents

It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.

Alternate names

As a configuration

This configuration matrix represents the 5-orthoplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. [1] [2]

Cartesian coordinates

Cartesian coordinates for the vertices of a 5-orthoplex, centered at the origin are

(±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1)

Construction

There are three Coxeter groups associated with the 5-orthoplex, one regular, dual of the penteract with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 5-cell facets, alternating, with the D5 or [32,1,1] Coxeter group, and the final one as a dual 5-orthotope, called a 5-fusil which can have a variety of subsymmetries.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure(s)
regular 5-orthoplexCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png{3,3,3,4}[3,3,3,4]3840CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Quasiregular 5-orthoplexCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png{3,3,31,1}[3,3,31,1]1920CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
5-fusil
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png{3,3,3,4}[4,3,3,3]3840CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png{3,3,4}+{}[4,3,3,2]768CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png{3,4}+{4}[4,3,2,4]384CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png{3,4}+2{}[4,3,2,2]192CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.png2{4}+{}[4,2,4,2]128CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png{4}+3{}[4,2,2,2]64CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png5{}[2,2,2,2]32CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png

Other images

orthographic projections
Coxeter plane B5B4 / D5B3 / D4 / A2
Graph 5-cube t4.svg 5-cube t4 B4.svg 5-cube t4 B3.svg
Dihedral symmetry [10][8][6]
Coxeter planeB2A3
Graph 5-cube t4 B2.svg 5-cube t4 A3.svg
Dihedral symmetry[4][4]
Pentacross wire.png
The perspective projection (3D to 2D) of a stereographic projection (4D to 3D) of the Schlegel diagram (5D to 4D) of the 5-orthoplex. 10 sets of 4 edges form 10 circles in the 4D Schlegel diagram: two of these circles are straight lines in the stereographic projection because they contain the center of projection.
2k1 figures in n dimensions
SpaceFiniteEuclideanHyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1E4=A4E5=D5 E6 E7 E8 E9 = = E8+E10 = = E8++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,2,1][30,2,1][[31,2,1]][32,2,1][33,2,1][34,2,1][35,2,1][36,2,1]
Order 1212038451,8402,903,040696,729,600
Graph Trigonal dihedron.png 4-simplex t0.svg 5-cube t4.svg Up 2 21 t0 E6.svg Up2 2 31 t0 E7.svg 2 41 t0 E8.svg --
Name 2−1,1 201 211 221 231 241 251 261

This polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex.

B5 polytopes
5-cube t4.svg
β5
5-cube t3.svg
t1β5
5-cube t2.svg
t2γ5
5-cube t1.svg
t1γ5
5-cube t0.svg
γ5
5-cube t34.svg
t0,1β5
5-cube t24.svg
t0,2β5
5-cube t23.svg
t1,2β5
5-cube t14.svg
t0,3β5
5-cube t13.svg
t1,3γ5
5-cube t12.svg
t1,2γ5
5-cube t04.svg
t0,4γ5
5-cube t03.svg
t0,3γ5
5-cube t02.svg
t0,2γ5
5-cube t01.svg
t0,1γ5
5-cube t234.svg
t0,1,2β5
5-cube t134.svg
t0,1,3β5
5-cube t124.svg
t0,2,3β5
5-cube t123.svg
t1,2,3γ5
5-cube t034.svg
t0,1,4β5
5-cube t024.svg
t0,2,4γ5
5-cube t023.svg
t0,2,3γ5
5-cube t014.svg
t0,1,4γ5
5-cube t013.svg
t0,1,3γ5
5-cube t012.svg
t0,1,2γ5
5-cube t1234.svg
t0,1,2,3β5
5-cube t0234.svg
t0,1,2,4β5
5-cube t0134.svg
t0,1,3,4γ5
5-cube t0124.svg
t0,1,2,4γ5
5-cube t0123.svg
t0,1,2,3γ5
5-cube t01234.svg
t0,1,2,3,4γ5

Related Research Articles

<span class="mw-page-title-main">5-polytope</span> 5-dimensional geometric object

In geometry, a five-dimensional polytope is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell.

In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.

<span class="mw-page-title-main">5-demicube</span>

In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed.

In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(1/5), or approximately 78.46°.

<span class="mw-page-title-main">6-cube</span> 6-dimensional hypercube

In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.

<span class="mw-page-title-main">6-orthoplex</span>

In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell 4-faces, and 64 5-faces.

<span class="mw-page-title-main">7-cube</span> 7-dimensional hypercube

In geometry, a 7-cube is a seven-dimensional hypercube with 128 vertices, 448 edges, 672 square faces, 560 cubic cells, 280 tesseract 4-faces, 84 penteract 5-faces, and 14 hexeract 6-faces.

<span class="mw-page-title-main">8-cube</span> 8-dimensional hypercube

In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.

<span class="mw-page-title-main">9-cube</span> 9-dimensional hypercube

In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.

<span class="mw-page-title-main">7-orthoplex</span>

In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cells 4-faces, 448 5-faces, and 128 6-faces.

In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.

<span class="mw-page-title-main">7-simplex</span>

In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices, 28 edges, 56 triangle faces, 70 tetrahedral cells, 56 5-cell 5-faces, 28 5-simplex 6-faces, and 8 6-simplex 7-faces. Its dihedral angle is cos−1(1/7), or approximately 81.79°.

<span class="mw-page-title-main">8-orthoplex</span>

In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

<span class="mw-page-title-main">8-simplex</span>

In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is cos−1(1/8), or approximately 82.82°.

<span class="mw-page-title-main">9-orthoplex</span>

In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells 4-faces, 5376 5-simplex 5-faces, 4608 6-simplex 6-faces, 2304 7-simplex 7-faces, and 512 8-simplex 8-faces.

<span class="mw-page-title-main">10-cube</span> 10-dimensional hypercube

In geometry, a 10-cube is a ten-dimensional hypercube. It has 1024 vertices, 5120 edges, 11520 square faces, 15360 cubic cells, 13440 tesseract 4-faces, 8064 5-cube 5-faces, 3360 6-cube 6-faces, 960 7-cube 7-faces, 180 8-cube 8-faces, and 20 9-cube 9-faces.

<span class="mw-page-title-main">10-orthoplex</span>

In geometry, a 10-orthoplex or 10-cross polytope, is a regular 10-polytope with 20 vertices, 180 edges, 960 triangle faces, 3360 octahedron cells, 8064 5-cells 4-faces, 13440 5-faces, 15360 6-faces, 11520 7-faces, 5120 8-faces, and 1024 9-faces.

<span class="mw-page-title-main">Rectified 5-simplexes</span>

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

<span class="mw-page-title-main">Rectified 5-orthoplexes</span>

In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a rectification of the regular 5-orthoplex.

<span class="mw-page-title-main">6-polytope</span>

In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.

References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds