In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
There are six convex and ten star regular 4-polytopes, giving a total of sixteen.
The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. [1] He discovered that there are precisely six such figures.
Schläfli also found four of the regular star 4-polytopes: the grand 120-cell, great stellated 120-cell, grand 600-cell, and great grand stellated 120-cell. He skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F − E + V = 2). That excludes cells and vertex figures such as the great dodecahedron {5,5/2} and small stellated dodecahedron {5/2,5}.
Edmund Hess (1843–1903) published the complete list in his 1883 German book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder.
The existence of a regular 4-polytope is constrained by the existence of the regular polyhedra which form its cells and a dihedral angle constraint
to ensure that the cells meet to form a closed 3-surface.
The six convex and ten star polytopes described are the only solutions to these constraints.
There are four nonconvex Schläfli symbols {p,q,r} that have valid cells {p,q} and vertex figures {q,r}, and pass the dihedral test, but fail to produce finite figures: {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}.
The regular convex 4-polytopes are the four-dimensional analogues of the Platonic solids in three dimensions and the convex regular polygons in two dimensions.
Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size. These are fitted together along their respective faces (face-to-face) in a regular fashion, forming the surface of the 4-polytope which is a closed, curved 3-dimensional space (analogous to the way the surface of the earth is a closed, curved 2-dimensional space).
Like their 3-dimensional analogues, the convex regular 4-polytopes can be naturally ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content within the same radius. [2] The 4-simplex (5-cell) has the smallest content, and the 120-cell has the largest.
Regular convex 4-polytopes | |||||||
---|---|---|---|---|---|---|---|
Symmetry group | A4 | B4 | F4 | H4 | |||
Name | 5-cell Hyper-tetrahedron | 16-cell Hyper-octahedron | 8-cell Hyper-cube | 24-cell
| 600-cell Hyper-icosahedron | 120-cell Hyper-dodecahedron | |
Schläfli symbol | {3, 3, 3} | {3, 3, 4} | {4, 3, 3} | {3, 4, 3} | {3, 3, 5} | {5, 3, 3} | |
Coxeter mirrors | |||||||
Mirror dihedrals | 𝝅/3𝝅/3𝝅/3𝝅/2𝝅/2𝝅/2 | 𝝅/3𝝅/3𝝅/4𝝅/2𝝅/2𝝅/2 | 𝝅/4𝝅/3𝝅/3𝝅/2𝝅/2𝝅/2 | 𝝅/3𝝅/4𝝅/3𝝅/2𝝅/2𝝅/2 | 𝝅/3𝝅/3𝝅/5𝝅/2𝝅/2𝝅/2 | 𝝅/5𝝅/3𝝅/3𝝅/2𝝅/2𝝅/2 | |
Graph | |||||||
Vertices | 5 tetrahedral | 8 octahedral | 16 tetrahedral | 24 cubical | 120 icosahedral | 600 tetrahedral | |
Edges | 10 triangular | 24 square | 32 triangular | 96 triangular | 720 pentagonal | 1200 triangular | |
Faces | 10 triangles | 32 triangles | 24 squares | 96 triangles | 1200 triangles | 720 pentagons | |
Cells | 5 tetrahedra | 16 tetrahedra | 8 cubes | 24 octahedra | 600 tetrahedra | 120 dodecahedra | |
Tori | 1 5-tetrahedron | 2 8-tetrahedron | 2 4-cube | 4 6-octahedron | 20 30-tetrahedron | 12 10-dodecahedron | |
Inscribed | 120 in 120-cell | 675 in 120-cell | 2 16-cells | 3 8-cells | 25 24-cells | 10 600-cells | |
Great polygons | 2 squares x 3 | 4 rectangles x 4 | 4 hexagons x 4 | 12 decagons x 6 | 100 irregular hexagons x 4 | ||
Petrie polygons | 1 pentagon x 2 | 1 octagon x 3 | 2 octagons x 4 | 2 dodecagons x 4 | 4 30-gons x 6 | 20 30-gons x 4 | |
Long radius | |||||||
Edge length | |||||||
Short radius | |||||||
Area | |||||||
Volume | |||||||
4-Content |
The following table lists some properties of the six convex regular 4-polytopes. The symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group.
Names | Image | Family | Schläfli Coxeter | V | E | F | C | Vert. fig. | Dual | Symmetry group | |
---|---|---|---|---|---|---|---|---|---|---|---|
5-cell pentachoron pentatope 4-simplex | n-simplex (An family) | {3,3,3} | 5 | 10 | 10 {3} | 5 {3,3} | {3,3} | self-dual | A4 [3,3,3] | 120 | |
16-cell hexadecachoron 4-orthoplex | n-orthoplex (Bn family) | {3,3,4} | 8 | 24 | 32 {3} | 16 {3,3} | {3,4} | 8-cell | B4 [4,3,3] | 384 | |
8-cell octachoron tesseract 4-cube | hypercube n-cube (Bn family) | {4,3,3} | 16 | 32 | 24 {4} | 8 {4,3} | {3,3} | 16-cell | |||
24-cell icositetrachoron octaplex polyoctahedron (pO) | Fn family | {3,4,3} | 24 | 96 | 96 {3} | 24 {3,4} | {4,3} | self-dual | F4 [3,4,3] | 1152 | |
600-cell hexacosichoron tetraplex polytetrahedron (pT) | n-pentagonal polytope (Hn family) | {3,3,5} | 120 | 720 | 1200 {3} | 600 {3,3} | {3,5} | 120-cell | H4 [5,3,3] | 14400 | |
120-cell hecatonicosachoron dodecacontachoron dodecaplex polydodecahedron (pD) | n-pentagonal polytope (Hn family) | {5,3,3} | 600 | 1200 | 720 {5} | 120 {5,3} | {3,3} | 600-cell |
John Conway advocated the names simplex, orthoplex, tesseract, octaplex or polyoctahedron (pO), tetraplex or polytetrahedron (pT), and dodecaplex or polydodecahedron (pD). [3]
Norman Johnson advocated the names n-cell, or pentachoron, hexadecachoron, tesseract or octachoron, icositetrachoron, hexacosichoron, and hecatonicosachoron (or dodecacontachoron), coining the term polychoron being a 4D analogy to the 3D polyhedron, and 2D polygon, expressed from the Greek roots poly ("many") and choros ("room" or "space"). [4] [5]
The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analogue of Euler's polyhedral formula:
where Nk denotes the number of k-faces in the polytope (a vertex is a 0-face, an edge is a 1-face, etc.).
The topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients. [6]
A regular 4-polytope can be completely described as a configuration matrix containing counts of its component elements. The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers (upper left to lower right) say how many of each element occur in the whole 4-polytope. The non-diagonal numbers say how many of the column's element occur in or at the row's element. For example, there are 2 vertices in each edge (each edge has 2 vertices), and 2 cells meet at each face (each face belongs to 2 cells), in any regular 4-polytope. The configuration for the dual polytope can be obtained by rotating the matrix by 180 degrees. [7] [8]
5-cell {3,3,3} | 16-cell {3,3,4} | 8-cell {4,3,3} | 24-cell {3,4,3} | 600-cell {3,3,5} | 120-cell {5,3,3} |
---|---|---|---|---|---|
The following table shows some 2-dimensional projections of these 4-polytopes. Various other visualizations can be found in the external links below. The Coxeter-Dynkin diagram graphs are also given below the Schläfli symbol.
A4 = [3,3,3] | B4 = [4,3,3] | F4 = [3,4,3] | H4 = [5,3,3] | ||
---|---|---|---|---|---|
5-cell | 16-cell | 8-cell | 24-cell | 600-cell | 120-cell |
{3,3,3} | {3,3,4} | {4,3,3} | {3,4,3} | {3,3,5} | {5,3,3} |
Solid 3D orthographic projections | |||||
Tetrahedral envelope (cell/vertex-centered) | Cubic envelope (cell-centered) | Cubic envelope (cell-centered) | Cuboctahedral envelope (cell-centered) | Pentakis icosidodecahedral envelope (vertex-centered) | Truncated rhombic triacontahedron envelope (cell-centered) |
Wireframe Schlegel diagrams (Perspective projection) | |||||
Cell-centered | Cell-centered | Cell-centered | Cell-centered | Vertex-centered | Cell-centered |
Wireframe stereographic projections (3-sphere) | |||||
The Schläfli–Hess 4-polytopes are the complete set of 10 regular self-intersecting star polychora (four-dimensional polytopes). [10] They are named in honor of their discoverers: Ludwig Schläfli and Edmund Hess. Each is represented by a Schläfli symbol {p,q,r} in which one of the numbers is 5/2. They are thus analogous to the regular nonconvex Kepler–Poinsot polyhedra, which are in turn analogous to the pentagram.
Their names given here were given by John Conway, extending Cayley's names for the Kepler–Poinsot polyhedra: along with stellated and great, he adds a grand modifier. Conway offered these operational definitions:
John Conway names the 10 forms from 3 regular celled 4-polytopes: pT=polytetrahedron {3,3,5} (a tetrahedral 600-cell), pI=polyicosahedron {3,5,5/2} (an icosahedral 120-cell), and pD=polydodecahedron {5,3,3} (a dodecahedral 120-cell), with prefix modifiers: g, a, and s for great, (ag)grand, and stellated. The final stellation, the great grand stellated polydodecahedron contains them all as gaspD.
All ten polychora have [3,3,5] (H4) hexacosichoric symmetry. They are generated from 6 related Goursat tetrahedra rational-order symmetry groups: [3,5,5/2], [5,5/2,5], [5,3,5/2], [5/2,5,5/2], [5,5/2,3], and [3,3,5/2].
Each group has 2 regular star-polychora, except for two groups which are self-dual, having only one. So there are 4 dual-pairs and 2 self-dual forms among the ten regular star polychora.
Note:
The cells (polyhedra), their faces (polygons), the polygonal edge figures and polyhedral vertex figures are identified by their Schläfli symbols.
Name Conway (abbrev.) | Orthogonal projection | Schläfli Coxeter | C {p, q} | F {p} | E {r} | V {q, r} | Dens. | χ |
---|---|---|---|---|---|---|---|---|
Icosahedral 120-cell polyicosahedron (pI) | {3,5,5/2} | 120 {3,5} | 1200 {3} | 720 {5/2} | 120 {5,5/2} | 4 | 480 | |
Small stellated 120-cell stellated polydodecahedron (spD) | {5/2,5,3} | 120 {5/2,5} | 720 {5/2} | 1200 {3} | 120 {5,3} | 4 | −480 | |
Great 120-cell great polydodecahedron (gpD) | {5,5/2,5} | 120 {5,5/2} | 720 {5} | 720 {5} | 120 {5/2,5} | 6 | 0 | |
Grand 120-cell grand polydodecahedron (apD) | {5,3,5/2} | 120 {5,3} | 720 {5} | 720 {5/2} | 120 {3,5/2} | 20 | 0 | |
Great stellated 120-cell great stellated polydodecahedron (gspD) | {5/2,3,5} | 120 {5/2,3} | 720 {5/2} | 720 {5} | 120 {3,5} | 20 | 0 | |
Grand stellated 120-cell grand stellated polydodecahedron (aspD) | {5/2,5,5/2} | 120 {5/2,5} | 720 {5/2} | 720 {5/2} | 120 {5,5/2} | 66 | 0 | |
Great grand 120-cell great grand polydodecahedron (gapD) | {5,5/2,3} | 120 {5,5/2} | 720 {5} | 1200 {3} | 120 {5/2,3} | 76 | −480 | |
Great icosahedral 120-cell great polyicosahedron (gpI) | {3,5/2,5} | 120 {3,5/2} | 1200 {3} | 720 {5} | 120 {5/2,5} | 76 | 480 | |
Grand 600-cell grand polytetrahedron (apT) | {3,3,5/2} | 600 {3,3} | 1200 {3} | 720 {5/2} | 120 {3,5/2} | 191 | 0 | |
Great grand stellated 120-cell great grand stellated polydodecahedron (gaspD) | {5/2,3,3} | 120 {5/2,3} | 720 {5/2} | 1200 {3} | 600 {3,3} | 191 | 0 |
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.
In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from the Latin stella, "star". Stellation is the reciprocal or dual process to faceting.
In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.
In geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell.
In geometry, the small stellated 120-cell or stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,3}. It is one of 10 regular Schläfli-Hess polytopes.
In geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes.
In geometry, the grand 120-cell or grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,3,5/2}. It is one of 10 regular Schläfli-Hess polytopes.
In geometry, the great stellated 120-cell or great stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,5}. It is one of 10 regular Schläfli-Hess polytopes.
In geometry, the great icosahedral 120-cell, great polyicosahedron or great faceted 600-cell is a regular star 4-polytope with Schläfli symbol {3,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes.
In geometry, the great 120-cell or great polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes. It is one of the two such polytopes that is self-dual.
In geometry, the grand stellated 120-cell or grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is also one of two such polytopes that is self-dual.
In geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral).