Density (polytope)

Last updated
The boundary of the regular enneagram {9/4} winds around its centre 4 times, so it has a density of 4. Star polygon 9 4.png
The boundary of the regular enneagram {9/4} winds around its centre 4 times, so it has a density of 4.

In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through. For polyhedra for which this count does not depend on the choice of the ray, and for which the central point is not itself on any facet, the density is given by this count of crossed facets.

Contents

The same calculation can be performed for any convex polyhedron, even one without symmetries, by choosing any point interior to the polyhedron as its center. For these polyhedra, the density will be 1. More generally, for any non-self-intersecting (acoptic) polyhedron, the density can be computed as 1 by a similar calculation that chooses a ray from an interior point that only passes through facets of the polyhedron, adds one when this ray passes from the interior to the exterior of the polyhedron, and subtracts one when this ray passes from the exterior to the interior of the polyhedron. However, this assignment of signs to crossings does not generally apply to star polyhedra, as they do not have a well-defined interior and exterior.

Tessellations with overlapping faces can similarly define density as the number of coverings of faces over any given point. [1]

Polygons

The density of a polygon is the number of times that the polygonal boundary winds around its center. For convex polygons, and more generally simple polygons (not self-intersecting), the density is 1, by the Jordan curve theorem.

The density of a polygon can also be called its turning number; the sum of the turn angles of all the vertices divided by 360°. This will be an integer for all unicursal paths in a plane.

The density of a compound polygon is the sum of the densities of the component polygons.

Regular star polygons

For a regular star polygon {p/q}, the density is q. It can be visually determined by counting the minimum number of edge crossings of a ray from the center to infinity.

Examples

Polyhedra

A polyhedron and its dual have the same density.

Total curvature

A polyhedron can be considered a surface with Gaussian curvature concentrated at the vertices and defined by an angle defect. The density of a polyhedron is equal to the total curvature (summed over all its vertices) divided by 4π. [2]

For example, a cube has 8 vertices, each with 3 squares, leaving an angle defect of π/2. 8×π/2=4π. So the density of the cube is 1.

Simple polyhedra

The density of a polyhedron with simple faces and vertex figures is half of the Euler Characteristic, χ. If its genus is g, its density is 1-g.

χ = VE + F = 2D = 2(1-g).

Regular star polyhedra

Arthur Cayley used density as a way to modify Euler's polyhedron formula (VE + F = 2) to work for the regular star polyhedra, where dv is the density of a vertex figure, df of a face and D of the polyhedron as a whole:

[3]

For example, the great icosahedron, {3, 5/2}, has 20 triangular faces (df = 1), 30 edges and 12 pentagrammic vertex figures (dv = 2), giving

2·12 30 + 1·20 = 14 = 2D.

This implies a density of 7. The unmodified Euler's polyhedron formula fails for the small stellated dodecahedron {5/2, 5} and its dual great dodecahedron {5, 5/2}, for which VE + F = −6.

The regular star polyhedra exist in two dual pairs, with each figure having the same density as its dual: one pair (small stellated dodecahedron—great dodecahedron) has a density of 3, while the other (great stellated dodecahedron–great icosahedron) has a density of 7.

Great icosahedron.png Great icosahedron cutplane.png
The nonconvex great icosahedron, {3,5/2} has a density of 7 as demonstrated in this transparent and cross-sectional view on the right.

General star polyhedra

Edmund Hess generalized the formula for star polyhedra with different kinds of face, some of which may fold backwards over others. The resulting value for density corresponds to the number of times the associated spherical polyhedron covers the sphere.

This allowed Coxeter et al. to determine the densities of the majority of the uniform polyhedra, which have one vertex type, and multiple face types. [4]

Nonorientable polyhedra

For hemipolyhedra, some of whose faces pass through the center, the density cannot be defined. Non-orientable polyhedra also do not have well-defined densities.

Regular 4-polytopes

The great grand stellated 120-cell has density 191. Ortho solid 016-uniform polychoron p33-t0.png
The great grand stellated 120-cell has density 191.

There are 10 regular star 4-polytopes (called the Schläfli–Hess 4-polytopes), which have densities between 4, 6, 20, 66, 76, and 191. They come in dual pairs, with the exception of the self-dual density-6 and density-66 figures.

Notes

  1. Coxeter, H. S. M; The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN   99-35678, ISBN   0-486-40919-8 (206–214, Density of regular honeycombs in hyperbolic space)
  2. Geometry and the Imagination in Minneapolis 17. The angle defect of a polyhedron; 20. Curvature of surfaces; 21. Gaussian curvature; 27.3.1 Curvature for Polyhedra pp. 32-51
  3. Cromwell, P.; Polyhedra, CUP hbk (1997), pbk. (1999). (Page 258)
  4. Coxeter, 1954 (Section 6, Density and Table 7, Uniform polyhedra)

Related Research Articles

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Regular polytope</span> Polytope with highest degree of symmetry

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension jn.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Final stellation of the icosahedron</span> Outermost stellation of the icosahedron

In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron or inside of it. It was studied by Max Brückner after the discovery of Kepler–Poinsot polyhedron. It can be viewed as an irregular, simple, and star polyhedron.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

<span class="mw-page-title-main">Faceting</span> Removing parts of a polytope without creating new vertices

In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.

<span class="mw-page-title-main">Regular 4-polytope</span> Four-dimensional analogues of the regular polyhedra in three dimensions

In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

<span class="mw-page-title-main">Decagram (geometry)</span> 10-pointed star polygon

In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}.

References