Equilateral pentagon

Last updated
Equilateral pentagon built with four equal circles disposed in a chain. Equilateral pentagon.SVG
Equilateral pentagon built with four equal circles disposed in a chain.

In geometry, an equilateral pentagon is a polygon in the Euclidean plane with five sides of equal length. Its five vertex angles can take a range of sets of values, thus permitting it to form a family of pentagons. In contrast, the regular pentagon is unique, because it is equilateral and moreover it is equiangular (its five angles are equal; the measure is 108 degrees).

Contents

Four intersecting equal circles arranged in a closed chain are sufficient to determine a convex equilateral pentagon. Each circle's center is one of four vertices of the pentagon. The remaining vertex is determined by one of the intersection points of the first and the last circle of the chain.

Examples

Simple Collinear edges Complex polygon
Convex Concave
Equilateral pentagon-decatile1.svg
Regular pentagon
(108° internal angles)
Equilateral pentagon-dodecatile1.svg
Adjacent right angles
(60° 150° 90° 90° 150°)
Equilateral pentagon-decatile4.svg
Reflexed regular pentagon
(36° 252° 36° 108° 108°)
Versatile-pentagon.png
Dodecagonal versatile [1]
(30° 210° 60° 90° 150°)
Equilateral pentagon-hexatile1.svg
Degenerate into trapezoid
(120° 120° 60° 180° 60°)
Equilateral pentagon-decatile2.svg
Regular star
pentagram
(36°)
Equilateral pentagon-decatile3.svg
Intersecting
(36° 108° −36° −36° 108°)
5-gon equilateral 01.svg 5-gon equilateral 03.svg Triangle.Isosceles.svg
Degenerate into triangle
(≈28.07° 180° ≈75.96° ≈75.96° 180°)
5-gon equilateral 06.svg
Self-intersecting
5-gon equilateral 05.svg
Degenerate
(edge-vertex overlap)

Internal angles of a convex equilateral pentagon

Convex equilateral pentagon dissected into 3 triangles, which helps to calculate the value of angle d as a function of a and b. Equilateral pentagon triangulated.SVG
Convex equilateral pentagon dissected into 3 triangles, which helps to calculate the value of angle δ as a function of α and β.

When a convex equilateral pentagon is dissected into triangles, two of them appear as isosceles (triangles in orange and blue) while the other one is more general (triangle in green). We assume that we are given the adjacent angles and .

According to the law of sines the length of the line dividing the green and blue triangles is:

The square of the length of the line dividing the orange and green triangles is:

According to the law of cosines, the cosine of δ can be seen from the figure:

Simplifying, δ is obtained as function of α and β:

The remaining angles of the pentagon can be found geometrically: The remaining angles of the orange and blue triangles are readily found by noting that two angles of an isosceles triangle are equal while all three angles sum to 180°. Then and the two remaining angles of the green triangle can be found from four equations stating that the sum of the angles of the pentagon is 540°, the sum of the angles of the green triangle is 180°, the angle is the sum of its three components, and the angle is the sum of its two components.

A cyclic pentagon is equiangular if and only if it has equal sides and thus is regular. Likewise, a tangential pentagon is equilateral if and only if it has equal angles and thus is regular. [2]

Tiling

Cairo pentagonal tiling by equilateral pentagons with two non-adjacent right angles Equilateral Cairo tiling.svg
Cairo pentagonal tiling by equilateral pentagons with two non-adjacent right angles

There are two infinite families of equilateral convex pentagons that tile the plane, one having two adjacent supplementary angles and the other having two non-adjacent supplementary angles. Some of those pentagons can tile in more than one way, and there is one sporadic example of an equilateral pentagon that can tile the plane but does not belong to either of those two families; its angles are roughly 89°16', 144°32.5', 70°55', 135°22', and 99°54.5', no two supplementary. [3]

A two-dimensional mapping

All the equilateral pentagons plotted within the area delimited by the condition a >= b >= d. Three regions for each of three types of pentagons are shown: stellated, concave and convex Equilateral pentagons plot.svg
All the equilateral pentagons plotted within the area delimited by the condition α  β  δ. Three regions for each of three types of pentagons are shown: stellated, concave and convex

Equilateral pentagons can intersect themselves either not at all, once, twice, or five times. The ones that don't intersect themselves are called simple, and they can be classified as either convex or concave. We here use the term "stellated" to refer to the ones that intersect themselves either twice or five times. We rule out, in this section, the equilateral pentagons that intersect themselves precisely once.

Given that we rule out the pentagons that intersect themselves once, we can plot the rest as a function of two variables in the two-dimensional plane. Each pair of values (α, β) maps to a single point of the plane and also maps to a single pentagon.

The periodicity of the values of α and β and the condition α ≥ β ≥ δ permit the size of the mapping to be limited. In the plane with coordinate axes α and β, the equation α = β is a line dividing the plane in two parts (south border shown in orange in the drawing). The equation δ = β as a curve divides the plane into different sections (north border shown in blue).

Both borders enclose a continuous region of the plane whose points map to unique equilateral pentagons. Points outside the region just map to repeated pentagons—that is, pentagons that when rotated or reflected can match others already described. Pentagons that map exactly onto those borders have a line of symmetry.

Inside the region of unique mappings there are three types of pentagons: stellated, concave and convex, separated by new borders.

Stellated

The stellated pentagons have sides intersected by others. A common example of this type of pentagon is the pentagram. A condition for a pentagon to be stellated, or self-intersecting, is to have 2α + β  180°. So, in the mapping, the line 2α + β = 180° (shown in orange at the north) is the border between the regions of stellated and non-stellated pentagons. Pentagons which map exactly to this border have a vertex touching another side.

Concave

The concave pentagons are non-stellated pentagons having at least one angle greater than 180°. The first angle which opens wider than 180° is γ, so the equation γ = 180° (border shown in green at right) is a curve which is the border of the regions of concave pentagons and others, called convex. Pentagons which map exactly to this border have at least two consecutive sides appearing as a double length side, which resembles a pentagon degenerated to a quadrilateral.

Convex

The convex pentagons have all of their five angles smaller than 180° and no sides intersecting others. A common example of this type of pentagon is the regular pentagon.

Related Research Articles

In geometry, a polygon is a plane figure that is described by a finite number of straight line segments connected to form a closed polygonal chain. The bounded plane region, the bounding circuit, or the two together, may be called a polygon.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces.

Triangle Shape with three sides

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,

Rhombus Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

Cyclic quadrilateral Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

In geometry, an equilateral polygon is a polygon which has all sides of the same length. Except in the triangle case, an equilateral polygon does not need to also be equiangular, but if it does then it is a regular polygon. If the number of sides is at least five, an equilateral polygon does not need to be a convex polygon: it could be concave or even self-intersecting.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Law of tangents</span> Relates tangents of two angles of a triangle and the lengths of the opposing sides

In trigonometry, the law of tangents is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all of the trisectors are intersected, one obtains four other equilateral triangles.

Ptolemys theorem Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

Bretschneiders formula Formula for the area of a quadrilateral

In geometry, Bretschneider's formula is the following expression for the area of a general quadrilateral:

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged.

Morrie's law is a special trigonometric identity. Its name is due to the physicist Richard Feynman, who used to refer to the identity under that name. Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.

Law of cosines Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states

Pentagon Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Mollweide's formula</span>

In trigonometry, Mollweide's formula is a set of two relationships between sides and angles in a triangle.

Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

Equal detour point

The equal detour point is a triangle center with the Kimberling number X(176). It is characterized by the equal detour property, that is if you travel from any vertex of a triangle to another by taking a detour through some inner point then the additional distance travelled is constant. This means the following equation has to hold:

References

  1. Grünbaum, B. and Shephard, G.C., 1979. Spiral tilings and versatiles. Mathematics Teaching, 88, pp.50-51. Spiral Tilings, Paul Gailiunas
  2. De Villiers, Michael, "Equiangular cyclic and equilateral circumscribed polygons", Mathematical Gazette 95, March 2011, 102-107.
  3. Schattschneider, Doris (1978), "Tiling the plane with congruent pentagons", Mathematics Magazine , 51 (1): 29–44, doi:10.1080/0025570X.1978.11976672, JSTOR   2689644, MR   0493766